We will explore..

- Rational for Study
- "Teen" Number Challenges
- Research Connections
- Study \ddagger Results
- Next Steps \& Questions?

Background of Study

- Mach Recovery
- 1:1 intervention with 1st graders
- High percentage of students who had issues surrounding "teen" numbers

"Teen" Number Challenges

- 12/20/21 mix up
- "Teen" number and decade number +1 mix ups (13 and 31; 14 and 41 ; etc)
- 13, 14 expressive language
- Counting backward from greater than 10

These issues lead

to...

- Inefficient strategies
- Place Value Misconceptions

$$
23+34=
$$

- Learning procedures without understanding

Intervention Stralegies Tried...

- Say it Louder/say it again
- Games/practice/LOTS of intervention
- One-keen, kwo keen, three keen, ekc...
- "Tenny". (Tenny-one, kenny-kwo)

What Does Brain Research Tell Us about Learning to Count?
How the Brain Learns Mathematics, David Sousa

- The human brain comprehends numerals as quantity, not as words.
- Our number system may indeed be a language, but it is a very special one that is handled in a different region of the brain from normal language.

English Words Make Learning Arithmetic Harder!

- How we say numbers in different languages runs the gamut from simple to complex.
- English is complex. Ten has three forms: ten, -teen, and $-t y$.
- Eleven and twelve fit no pattern, and the ones are stated before the tens in the numbers 13-19.
- The Chinese and Japanese language hold the prize for simplicity. Asian children learn to count earlier and higher than their American Wester peers.

Chinese Counting

- Nine short names for the numbers 1 through 9
- ui, er, san, si wu, liu, gi, ba, and jiu.
- The four multipliers are: 10 (shi), 100 (bai), 1,000 (quian), and 10,000 (wan).
- Composing a number past 10 is simple: shi ye, she er, she san, and so on.
- The same rules apply to larger numbers!

Table 4.2 A More Logical Counting System for Numbers 1 to 100

$\begin{gathered} 1 \\ \text { one } \end{gathered}$	$\begin{gathered} 2 \\ \text { two } \end{gathered}$	$\begin{gathered} 3 \\ \text { three } \end{gathered}$	$\begin{gathered} 4 \\ \text { four } \end{gathered}$	$\begin{gathered} 5 \\ \text { five } \end{gathered}$	$\begin{gathered} 6 \\ \text { slx } \end{gathered}$	7 seven	$\begin{gathered} 8 \\ \text { elght } \end{gathered}$	$\begin{gathered} 9 \\ \text { nine } \end{gathered}$	$\begin{aligned} & 10 \\ & \text { ten } \end{aligned}$
11 ten-one	$\begin{gathered} 12 \\ \text { ten-two } \end{gathered}$	$\begin{gathered} 13 \\ \text { ten-three } \end{gathered}$	$\begin{gathered} 14 \\ \text { ten-four } \end{gathered}$	$\begin{gathered} 15 \\ \text { ten-five } \end{gathered}$	$\begin{gathered} 16 \\ \text { ten-slx } \end{gathered}$	$\begin{gathered} 17 \\ \text { ten-seven } \end{gathered}$	18 ten-elght	$\begin{gathered} 19 \\ \text { ten-nine } \end{gathered}$	$\begin{gathered} 20 \\ \text { two-tan } \end{gathered}$
21 two-ten one	22 two-ten two	23 two-ten three	$\begin{aligned} & 24 \\ & \text { two-ten } \\ & \text { four } \end{aligned}$	$\begin{gathered} 25 \\ \text { two-ten } \\ \text { five } \end{gathered}$	$\begin{gathered} 26 \\ \text { two-ten } \\ \text { slx } \end{gathered}$	27 two-ten seven	$\begin{aligned} & 28 \\ & \text { two-ten } \\ & \text { elght } \end{aligned}$	29 two-ten nine	30 three-ten
```3 1 three-ten one```	32   three-ten two	```3 3 three-ten three```	34   three-ten four	```35 three-ten five```	```36 three-ten slx```	```37```	```38 three-ten elght```	```39 three-ten nine```	$40$   four-ten
41   four-ten   one	42   four-ten two	$43$   four-ten three	44 four-ten four	45   four-ten five	```4 6 four-ten slx```	$47$   four-ten seven	48 four-ten elght	```4 9 four-ten nine```	50 flive-ten
$51$   flive-ten one	52   flve-ten two	three	54   flve-ten four	55   five-ten five	56 flye-ten slx	$57$   flve-ten seven	flive-ten elght	59   flve-ten nine	60 slx-ten
61 slx-ten one	62   slx-ten two	$63$   slx-ten three	64 slx-ten four	65   slx-ten five	$\begin{gathered} 66 \\ \text { sbx-ten } \\ \text { slx } \end{gathered}$	67   sbx-tan seven	68   slx-ten elght	69   slx-ten nine	$70$   seven-ten
71   seven-ten one	```7 2 saven-ten two```	73   seven-ten three	74   seven-ten four	```75 seven-ten flve```	76 seven-ten slx	77 seven-ten seven	78 seven-ten elght	79   seven-ten   nine	$\begin{gathered} 80 \\ \text { elght-ten } \end{gathered}$
```81 elght-ten one```	```82 elght-ten two```	```83 elght-ten three```	84 elght-ten four	$\begin{aligned} & 85 \\ & \text { elght-ten } \\ & \text { five } \end{aligned}$	```88 elght-ten slx```	87   elght-ten seven	88 alght-ten elght	```8 9 elght-ten nine```	$\begin{gathered} 90 \\ \text { nine-ten } \end{gathered}$
```9 1 nine-ten one```	```92 nine-ten two```	```93 nlne-ten three```	94 nine-ten four	```95 nine-ten flve```	$\begin{aligned} & 96 \\ & \text { rine-ten } \\ & \text { slx } \end{aligned}$	$\begin{gathered} 97 \\ \text { nine-ten } \\ \text { seven } \end{gathered}$	98 nine-ten elght	$\begin{gathered} 99 \\ \text { nine-ten } \\ \text { nine } \end{gathered}$	100 ten-ten

David Sousa,
How the Brain
Learns
Mathemalics
Page 88

The Study...

- Idea
- K-2 Suburban School Reality
- 3 out of 7 Kindergarten Classes
- October co March
- Data Collection: SNAP Assessment \& Anecdotal


## Decisions...

- Two ways to name "teen" numbers
- Accepted either way on assessments
- Transition to Standard Form
- Only with 11 to 19


## Results

- In general positive
- All teachers would do again
- BNWS
- Numeral ID
- Mid-year: Number Words and Numerals H-L 14/27; 14/27; 12/27; 11/27


## Teacher Observations

- This strategy took away the verbal confusion with the early teen numbers and allowed all students to move through the forward rote counting easily and without hesitation and it helped facilitate the backward counting once they got the 20 to 10-9 jump.
"Many children with articulation issues have difficulty pronouncing 16, 14, 13 and it can be that much more confusing for them."
"It gave them a way to honor the 10 and say it first. There were fewer confusions with reversals (ie: 14 and 41)
"I would definitely try this strategy of counting again with my future classes. My students who experienced difficulty with rote counting after 10 seemed to pick the 10-1,10-2 sequence up very easily and they were able to begin rote counting very easily both forward and backward."
"The strongest students kept the traditional counting system "alive" within the classroom on an ongoing basis which helped everyone understand that we were talking about the same numeral, we just had 2 different ways of saying it."
"Even though some students were able to use both strategies for counting very easily and could go back and forth between the kwo, everyone benefited from the use of this counting strategy when they were introduced to using the ten frames with the teen numbers. Seeing 10-1, 10-2, etc. on the 20 frame boards really seemed to help clarify exactly what those numbers meant."


## Questions?

Contact Us!

- T.J. Jemison Leedjvi@gmail.com
- @teedjvi
- Barb BLanke drbarbblanke@gmail.com
- @pupprof

