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Factor Game Investigation 
 
Introduction: 
Does it matter which number you pick to start a game?  Does it matter who goes first?  Test these 
ideas with the Factor Game and then analyze data to uncover interesting or unexpected number 
patterns. 
 
Investigation:  
 
Part 1 
1. What patterns in the table might help you extend the data? 
2.  Record a couple of ideas before you move to other parts of this required investigation. 
3.  Continue to test, use, and refine your original observations. 
 
Part 2 
1.  What numbers selected as a first move earn a player more points than the opponent? 
2.  What patterns do you notice?  Record your conjectures on paper. 
3.  Test your conjectures by continuing the list of information in the table. 
4.  Finalize a conjecture that describes this type of number.   
 
Part 3 
1. What numbers selected as a first move give the opponent more points than the player? 
2.  What patterns do you notice? Record your conjecture on paper. 
3.  Test your conjectures referring to your extended table. 
4.  Finalize your conjecture that describes this type of number.  
 
Part 4 
1.  Proper factors are all the factors of a number, except itself.  Look for relationships between the sum 
of the proper factors of a number and the number.  
2.  What patterns do you notice? What is true about the numbers in each group you identify? Record 
your conjectures on paper.  Add numbers as evidence of each conjecture. 
3.  Test your conjectures. 
4.  Finalize conjectures that describe the different relationships you identify. 
 
Part 5 
1.  Return to Part 1. 
2.   Finalize original conjectures and/or add new ones. 
 
Thanks for being ready to share your discoveries in a whole group discussion. 
 
Reflection 
What skills do students need to do this? 
How do the skills learned in this investigation related to future learning? 
Where does this investigation fit in the learning progression? 
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Factor Game Rules 
1.  Player A chooses a number on the game board and circles it. 
2.  Using a different color, Player B circles all the proper factors of Player A's number.  The proper 
factors of a number are all the factors of that number, except the number itself.  For example, the 
proper factors of 6 are 1, 2 and 3.  Although six (6) is a factor of itself, it is not a proper factor. 
3.  Player B circles a new number, and Player A circles all the factors of the number that are not already 
circled. 
4.  The players take turns choosing numbers and circling factors. 
5.  If a player circles a number that has no factors left that have not been circled, that player loses a 
turn and does not get the points for the number circled. 
6.  The game ends when there are no numbers remaining with un-circled factors. 
7.  Each player adds the numbers that are circled with his or her color.  The player with the greater 
total is the winner. 
 
 Record this sample game on a game board following the actions of the players.  Find an 
opponent and play the game a couple of times.  And then use the data on the Table of First Moves for 
the investigation. 
 

 Player A Player B 

Action Score Score 

Player A circles 24. 
Player B circles factors 1,2,3,4,6,8,12---the proper 
factors of 24. 

24 36 

Player B circles 28.  
Player A circles factors 7, 14---the factors of 28 
not already circled. 

21 28 

Player A circles 27. 
Player B circles 9---the only factor of 27 not 
already circled.  

27 9 

Player B circles 30. 
Player A circles 5, 10, 15---only factors of 30 not 
already circled. 

30 30 

Player A circles 25. All factors of 25 are circled. 
Player A loses a turn and receives no points for 
this turn. 

0 --- 
 

Player B circles 26. 
Player A circles 13---the only factor of 26 
remaining on board. 

13 26 

Player A circles 22. 
Player B captures the factor 11  

22 11 

No numbers remain with uncircled factors. Player 
B wins.  
                                                                             TOTAL 

 
 
126 

 
 
151 



Table of Contents 4 
 

 
 



Table of Contents 5 
 

 



Table of Contents 6 
 

Toying with Tiles 
 

Introduction 

Rectangles, squares, or prime and composite numbers! How can you learn basic facts? What 
numbers make what shapes? Find out by playing with the tiles and looking for patterns! 
 

Part 1  
Accumulate Data: How many rectangles can you make with 7 tiles and 9 tiles? How about 13 
tiles? What are the differences among the collections of rectangles? What are the similarities?  

 
To expedite your time, we have created the first set of data for some numbers. In a classroom, 
students can discover relationships as they are making the rectangles.  

 

Part 2 
Finding patterns and relationships 
 

a. What type of numbers has only one rectangular arrangement?  
 

b. What type of numbers has only two rectangular arrangements?  
 

 
c. What type of numbers has a rectangular arrangement which is a square? 

 
d.  How is the number 1 different from all the other numbers that have only one rectangular 

arrangement?  Is 1 prime? 
 

 
e. Can you find the first number greater than 16 that has exactly two rectangular 

arrangements?  How about 3?  How about 4?  How about 1? 
 

 
f. Which numbers have rectangles with two tiles on the side? Write these numbers from 

smallest to largest. What kind of numbers are these? 
 

 

g. Which numbers have rectangles three tiles on the side? Write these numbers from 

smallest to largest. How would you describe this set of numbers? 

 

 

h. Which numbers have rectangles four tiles on the side? Write these numbers from smallest 

to largest. How would you describe this set of numbers? 

 

 

i. Which numbers have rectangles five tiles on the side? Write these numbers from smallest 

to largest. How would you describe this set of numbers? 
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j. Which numbers have rectangles that are also squares? Write these numbers from smallest 

to largest. How would you describe this set of numbers? 

 

k. How many tiles would there be in the next larger square? 

 

l. What is the smallest number with two different rectangles?  

 

 

m. With three different rectangles? _____ 

 

n. What number would be the first with four different rectangles? ___ 

 

o. Which numbers have only one rectangle? List them from smallest to largest.  

 

Part 3. 

Conjecture: What other ideas are you gathering from this data?  

 

Make a few more rectangles to test your ideas.  

 

What other ideas are you gathering from this data? 

 

 

Reflection 

 

1. Where does activity fits in the learning progressions? 

 

 

2. What skills do students need to do this? 

 

 

3.  How do the concepts/skills learned in this activity relate to future skills? 
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Product Game Investigation 
 
Introduction: 
Math becomes valuable when you want to win a game. Try your hand at the Product Game.  Analyze 
the relationships among factors, products and multiples to win and also to construct a new product 
game board, which you believe others will enjoy playing. 
Investigation:  
 
Part 1 –Play the Game  
Read the rules.  ON PAGE 2 follow the description of play for Players A and B. Record their moves on 
the adjacent game board; complete the game.  Play additional games with a human opponent; start 
each game with a different product.  Play the game against an electronic opponent at 
http://calculationnation.nctm.org/ 
 
 
 Rules  
1.  Player A puts a paper clip on a number in the factor list.  Player A does not mark a square on the 
product grid because only one factor has been marked---it takes two factors to make a product. 
2.  Player B puts the other paper clip on any number in the factor list (including the same number 
marked by Player A) and then shades or covers the product of the two factors on the product grid. 
3.  Player A moves either one of the paper clips to another number in the factor list and then shades or 
covers the new product. 
4.  Each player, in turn, moves one paper clip and marks a product.  If a product is already marked, the 
player does not get a mark for that turn.  The winner is the first player to mark four squares in a row---
up and down, across, or diagonally. 
 
 
Part 2 Analyze the Game 
Complete the Product Game Question Sheet. 
 
Part 3 Make a Game 
Make your own product game. 
 1.  Choose factors to include in your factor list. 
 2.  Determine the products you need to include on the game board. 
 3.  Sketch a game board that will accommodate all the products. 
 4.  Decide how many squares a player must get in a row to win. 
 
Reflection 
What skills do students need to do this? 
How do the skills learned in this investigation related to future learning? 
Where does this investigation fit in the learning progression? 
 
 
 

http://calculationnation.nctm.org/
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Product Game Investigation 
page 2 

 
Record and complete the sample game.  You will need two paper clips or other items to use as makers 
for the Factors listed below the game board.  
 
 
 
 

 
 
 
 
 
 

Player A Player B 

Places paperclip on 6 •Places paperclip on 8;  
•Says, "A factor of 6 multiplied by the factor 
8 equals product 48."   
•Records 6 x 8 = 48 

•Moves paper clip from 8 to 7.   
• Says, "A factor of 6 multiplied by the 
factor 7 equals product 42."   
•Records 6 x 7 = 42 

•Moves paper clip from 7 to 5 
•Says, "A factor of 6 multiplied by the factor 
5 equals product 30."   
•Records 6 x 5= 30 

•Moves paper clip from 6 to 8 
•Says, "A factor of 5 multiplied by the 
factor 8 equals product 40."   
•Records 8 x 5 = 40 
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Product Game Question Sheet 
 
1.  You have played the Product Game.  Suppose one of the paper clips is on 4. What products can you 
make by moving the other paper clip?  What do you know about this group of numbers? 
 
2.  You marked 12 on the game board.  On which factors could the paper clips be?  List all possibilities.  
What are other products that could be made in more than one way? 
 
3.  Record this partial game on a game board and then answers the following questions. 
 

Player A Player B 

Chooses paper clip 8 Chooses paper clip 2    8 x 7 = 56 

7 x 4 = 28 7 x 3 = 21 

3 x 6 = 18 6 x 5 = 30 

 
 a.  List the possible moves you could make. 
 b.  Which moves would give you three markers in a row? 
 c.  Which move(s) would allow you to block your opponent? 
 d.  Which move would you make Explain your strategy? 
 
4.  Which factors were used to create this Product Game Board? 
 

4 6 14 

9 21 49 

 
    Factors _______   _________  _________ 
 
 
 
5.  What factors were used to create this Product Game board?  Which number is missing from the 
grid? 

9 15 18 ---------- 

21 ? 30 35 

------- 36 42 49 

   
 
 
  Factors _______   _________  _________  ___________ 
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The Product Game Board      Name 

          Date 
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Divisibility 
 
Introduction: 
Studying the rules of divisibility highlights the relationship between multiplication and division.  In 
order for one whole number to be divisible by another whole number, the divisor must be a factor of 
the dividend.  Therefore, the multiples of a number are also divisible by that number.  In this activity, 
you will investigate lists of multiples.  You might just uncover something interesting or unexpected. 
 
Investigation: 
                 Part 1 

1.  Here are the first 20 multiples of 2.   
2.  What patterns do you notice?  Write you conjectures down. 
3.  Test your conjectures by continuing your list of multiples. 
4.  Do your conjectures hold true?  Construct a viable argument for divisibility of 2. 
5.  Repeat steps 1 – 4 with 5 and 10. (Optional) 
 
Part 2 
1.  The divisibility rule for 3 is: 

 A positive integer is evenly divided by 3 if the sum of its digits is divisible by 3. 
2.  Test several numbers to verify this is true. 
3.  List the first 20 multiples of 6. 
4.  What patterns do you notice?  Write down your conjectures. 
5.  Test your conjectures by continuing your list of multiples. 
6.  Construct a viable argument for divisibility by 6. 
 
Part 3 
1.  Divisibility by 4 has several rules.  A positive integer is evenly divisible by 4: 

 if the number formed the by the last two digits is divisible by 4. 

 if the tens digit is even and the ones digit is 0, 4, 8 OR if the tens digit is odd and the 
ones digit is 2 or 6. 

  if twice the tens digit plus the ones digit is divisible by 4. 
2.  Test several numbers to verify these rules. 

3.  List the first 20 multiples of 12. 
4.  What patterns do you notice?  Write down your conjectures. 
5.  Test your conjectures by continuing your list of multiples. 
6.  Construct a viable argument for divisibility by 12. 
 
Part 4 
Choose a number – 8, 14, 15, 16, 18, 20 – to investigate. 
Reflection 

1. What skills do students need to do this? 
2. How do the skills learned in this investigation related to future learning? 
3. Where does this investigation fit in the learning progression? 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
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The Number Devil 

 
Introduction: 
Prime numbers are defined as having exactly two unique factors.  Being able 
to determine whether a number is a prime number or not is an important skill.  
In The Number Devil, Robert learns about prima donna numbers and how to 
test for them.  In this activity, you will do a similar method and look for 
patterns in the numbers. 
 
Investigation: 

Part 1 – The Number Devil is a book about a boy, Robert, who hates Math.  He encounters a magical 
being in his dreams that introduces him to the wonder of numbers.  Read chapter 3, The Third Night, 
starting on page 49. 
 
Part 2 – Construct a 6-column color-coded sieve. 
1.  You will need a piece of grid paper that is 6 columns across and 17 rows down.  Place the numbers 1 
through 100 in the grids in order. 
2.  Outline the box with the number 2 in yellow; outline the box with the number 3 in orange; outline 
the box with the number 5 in blue; outline the box with the number 7 in pink.   
3.  Highlight all the numbers that are multiples of 2 in yellow.  Highlight all the numbers that are 
multiples of 3 in orange.  Highlight all the numbers that are 
multiples of 5 in blue.  Highlight all the multiples of 7 in pink. 
4.  If a number has more than one multiple, use a diagonal line to 
color half of it in one color and the other half in the other color.  
The first three rows should look like this: 
5.  If a number has more than two multiples, split the box on the 
other diagonal and color all three or four colors. 
 
Part 3 
1.  What patterns do you notice?  Write down your conjectures. 
2.  Extend your chart to test your conjectures. 
 
 
Reflection 

1. What skills do students need to do this? 
2. How do the skills learned in this investigation related to future learning? 
3. Where does this investigation fit in the learning progression? 
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Interesting Divisibility Rules 
 
2 Last digit is even 
      Example:  123,456 is divisible by 2 because the last digit, 6, is even. 
 
3 Sum of the digits is divisible by 3 
      Example:  123,456 is divisible by 3 because 1 + 2 + 3 + 4 + 5 + 6 = 21, which is divisible         
by 3 
3 The difference of the quantity of the digits 2,5,8 in the number from the quantity of the  digits 
1,4,7 in the number is a multiple of 3 
      Example:  123,456 is divisible by 3 because it has two 2,5,8’s and two 1,4,7’s so 2-2=0         
and 0 is a multiple of 3. 
 
4 The number formed by the last two digits is divisible by 4 
      Example:  123,456 is divisible by 4 because 56 is divisible by 4. 
4 The tens digit is even and the ones digit is 0,4,8 or the tens digit is odd and the ones  digit is 
2,6 
      Example:  123,456 is divisible by 4 because the tens digit is odd and the ones digit is         
6. 
4 Twice the tens digit plus the ones digit is divisible by 4 
      Example:  123,456 is divisible by 4 because 5 x 2 = 10; 10 + 6 = 16; 16 is divisible by 4. 
 
5  Last digit is 5 or 0 
      Example:  12,345 is divisible by 5 because the last digit is 5. 
 
6 Divisible by both 2 and 3 
      Example:  123,456 is divisible by 6 because it is divisible by both 2 and 3. 
 
7 Subtract 2 times the last digit from the rest 
      Example:  12,334 is divisible by 7 because 4 x 2 = 8 and 1,233 – 8 = 1225.  Then repeat       
the process with 5 x 2 = 10 and 122-10 = 112.  Repeat again 2 x 2 = 4 and 11 – 4 = 7         
which is definitely divisible by 7. 
7 Add 5 times the last digit to the rest 
      Example:  12,334 is divisible by 7 because 4 x 5 = 20 and 1233 + 20 = 1253; Then         
repeat the process with 3 x 5 = 15 and 125 + 15 = 140 which is divisible by 7. 
7 Multiply each digit from left to right with the corresponding number in the following 
 pattern -2, -3, -1, 2, 3, 1 and sum the results 
      Example:  12,334 is divisible by 7 because (1 x -2) + (2 x -3) + (3 x -1) + (3 x 2) + (4 x 3)         
= -2 + -6 + -3 + 6 + 12 = 7 which is divisible by 7. 
 
8 Last 3 digits is divisible by 8 

      Example:  123,456 is divisible by 8 because 456  8 – 57 
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8 If the hundreds digit is even, look at last two digits 
      Example:  123,456 is divisible by 8 because the hundreds digit is 4 (even) and the last          
two digits are 56 and 56 is divisible by 8. 
8 If the hundreds digit is odd, look at the last two digits plus 4 
      Example:  123,552 is divisible by 8 because the hundreds digit is 5 (odd) and the last         
two digits are 52.  52 + 4 = 56, which is divisible by 8. 
8 Add the last digit to twice the rest 
      Example:  456 is divisible by 8 because 45 x 2 = 90 and 90 + 6 = 96.  Repeat the         
process 9 x 2 = 18 and 18 + 6 = 24, which is divisible by 8. 
8 Add four times the hundreds digit to twice the tens digit to the ones digit 
      Example:  123,456 is divisible by 8 because (4 x 4) + (2 x 5) + 6 = 16 + 10 + 6 = 32         
which is divisible by 8. 
 
9  If the sum of the digits is divisible by 9 
      Example:  123,453 is divisible by 9 because 1 + 2 + 3 + 4 + 5 + 3 = 18 which is divisible         
by 9. 
 
10 Last digit is a 0 
      Example:  123,450 is divisible by 10 because the last digit is 0. 
 
11 Form the alternating sum of the digits from left to right 
      Example:  123,453 is divisible by 11 because 1 – 2 + 3 – 4 + 5 – 3 = 0 and 0 is divisible         
by 11. 
11 Add the digits in blocks of two from right to left 
      Example:  123,453 is divisible by 11 because 53 + 34 + 12 = 99 which is divisible by 11. 
11 Subtract the last digit from the rest 
      Example:  123,453 is divisible by 11 because 12,345 – 3 = 12,342 and 1,234 – 2 = 1232       
and 123 – 2 = 121 and 12 – 1 = 11. 
11 If the number of digits is even, add the first and subtract the last digit from the rest 
      Example:  123,453 is divisible by 11 because there are 6 digits (even) so 2345 +1 – 3 =         
2343.  Repeat the process 34 + 2 – 3 = 33 which is divisible by 11. 
11 If the number of digits is odd, subtract the first and last digit from the rest 
      Example:  12,342 is divisible by 11 because it has 5 (odd) digits so 234 – 1 – 2 = 231         
and 3 – 2 – 1 = 0, which is divisible by 11. 
 
12 Divisible by both 3 and 4 
      Example:  123,456 is divisible by 12 because it is divisible by 3 and 4. 
12 Subtract the last digit from twice the rest 
      Example:  123,456 is divisible by 12 because (12,345 x 2) – 6 = 24,684; (2468 x 2) – 4 =       
4932; (493 x 2) – 2 = 984; (98 x 2) – 4 = 192; (19 x 2) – 2 = 36 which is divisible by 12. 
 
13 Add four times the last digit to the rest 
      Example:  123,448 is divisible by 13 because 12,344 + 32 = 12,376; 1237 + 24 = 1261;         
126 + 4 = 130 which is divisible by 13. 
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13 Multiply each digit from right to left by the digit in the following pattern -3, -4, -1, 3, 4, 1  and 
sum the results 
      Example:  123,448 is divisible by 13 because (8 x -3) + (4 x -4) + (4 x -1) + (3 x 3) + (2 x          
4) + (1 x 1) = -26 which is divisible by 13. 
 
14 Divisible by both 2 and 7 
      Example:  12,334 is divisible by 14 because it is divisible by both 2 and 7.  
14 Add the last two digits to twice the rest’ 
      Example:  12,334 is divisible by 14 because (123 x 2) + 34 = 280 which is divisible by         
14. 
 
15 Divisible by both 3 and 5 
      Example:  12,345 is divisible by 15 because it is divisible by 5 and 3. 
 
16 Add the last two digits to four times the rest 
      Example:  123,456 is divisible by 16 because (1234 x 4) + 56 = 4992 and (49 x 4) + 92 =       
288 and (2 x 4) + 88 = 96 which is divisible by 16. 
16 Examine the last 4 digits 

      Example:  123,456 is divisible by 16 because 3456  16 = 216. 
 
17 Subtract 5 times the last digit from the rest 
      Example:  123,454 is divisible by 17 because 12,345 – 20 = 12,325; 1232 – 25 = 1207;         
120 – 35 = 85 which is divisible by 17. 
 
18 Divisible by both 2 and 9 
      Example:  123,444 is divisible by 18 because it is divisible by both 2 and 9. 
 
19 Add twice the last digit to the rest 
      Example:  123,443 is divisible by 19 because 12,344 + 6 = 12,350; 1235 + 0 = 1235;          
123 + 10 = 133; 13 + 6 = 19 which is divisible by 19. 
 
20 Divisible by 10 and tens digit is even 
      Example:  123,440 is divisible by 20 because its last digit is 0 and the tens digit is 4          
(even). 
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1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

49 50 51 52 53 54 

55 56 57 58 59 60 

61 62 63 64 65 66 

67 68 69 70 71 72 

73 74 75 76 77 78 
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79 80 81 82 83 84 

85 86 87 88 89 90 

91 92 93 94 95 96 

97 98 99 100   
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Watch One, Do One, Teach One: GCFs and LCMs 
Introduction:  Finding the greatest common factor (GCF) and the least common multiple (LCM) of two 
whole numbers is a skill that is a fundamental prerequisite to understanding rational number 
operation.  For example, GCF(24,16)=8 plays an important role in constructing equivalent fractions 
such as: 

 
24 3

16 2
   

And, LCM(24,16)=48 plays an important role in reasoning about adding fractions such as: 

 
13 7 26 21

24 16 48 48
     

How can we help students “make sense” of GCFs and LCMs?  How can we help students “visualize” 
GCFs and LCMs?  What algorithms are available for finding GCFs and LCMs?  We will approach these 
questions in this exploration.  
Investigation:  In this investigation we will ask you to engage in the protocol called, “Watch one, do 
one, teach one”.  In this protocol, the student is asked to play the role of observer by “watching one” 
as a mentor produces a product, explains a skill, or demonstrates a procedure.  The student’s role then 
shifts to participant by “doing one” through some demonstration of their newly acquired 
understanding, skill or procedure.  Finally, the student’s role shifts to mentor by “teaching one” where 
they explain their understanding of what they have just learned to another student, teacher or the 
whole class.   
Watch One: There are four video segments that present opportunities for you to “watch one”.  Each 
video is 6-8 minutes long and presents a different procedure for finding LCM(24,16) and GCF(24,16) 
and the reasoning behind the procedure.  Make a group decision who will watch which video.  Once 
video assignments have been decided upon, watch the video you have been assigned.  
Do One: Once you have watched a video, shift to “try one”.  Try the following three problems using the 
method that you have learned. Solutions to each of the “try one” problems are found the reverse of 
this sheet. 

1. LCM(12,15) and GCF(12,15) 

2. LCM(16,28) and GCF(16,28) 

3. LCM(25,27) and GCF(25,27) 

Teach One:  Pair up with another person who watched a different video and take turns “teaching one”.  
Use the following three problems.  Solutions to each of the “teach one” problems are found on the 
reverse of this sheet. 

1. LCM(14,16) and GCF(14,16) 

2. LCM(12,18) and GCF(12,18) 

3. LCM(36,27) and GCF(36,27) 

Reflection 

1. What skills do students need to do this? 
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2. How do the skills learned in this investigation related to future learning? 

3. Where does this investigation fit in the learning progression? 

Try One Solutions 
1. LCM(12,15)=60 and GCF(12,15)=3 

2. LCM(16,28)=112 and GCF(16,28)=4 

3. LCM(25,27)=675 and GCF(25,27)=1 

Teach One Solutions 
1. LCM(14,16)=112 and GCF(14,16)=2 

2. LCM(12,18)=36 and GCF(12,18)=6 

3. LCM(36,27)=108 and GCF(36,27)=9 
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Handshake Problem 
 

 
 
 
 
 
 
 
 

Investigation: 
Part 1.  
If everyone in this room shakes hands with everyone else, how many handshakes will there be?  Make 
a table to keep track.  
 

People Handshakes 

  

  

  

  

 
 
Part 2.   

1. Predict the number of handshakes more than _____, less than ________.  
 

2. How did you determine the total number of handshakes? 
 

3. Describe patterns you noticed in the investigation. Any unexpected relationships? 
 

4. How can you find the number of handshakes for any number (n) of people?  
 

 
 
Reflection 

1. What skills do students need to do this? 
 
 

2. How do the skills learned in this investigation related to future learning? 
 
 

3. Where does this investigation fit in the learning progression? 
 
 

Introduction: Number theory can become really interesting 
when you have time to discover patterns and unexpected 
relationships! We will explore some relationships with this 
activity. Hopefully you will discover some unexpected ones, 
maybe some you already know! 
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Testing for Primality…. What should I check? When can I stop? 
 
Introduction:  Prime numbers are important in mathematics.  They form the basic building blocks for 
the natural numbers through the Fundamental Theorem of Arithmetic.  They are important for 
efficiently finding greatest common factors and least common multiples.  They form the basis for 
cryptology which allows us to safely make purchases on the internet.  But how can we “test” a number 
to determine if it is prime or not, that is, how can we test for “primality”? 
Investigation:  Consider the number 97.  Is it prime?  Is it composite?  How can we tell?  One way to 
“test” a number to see if it is prime is through a process called trial division.  In trial division, a 
candidate for primality is divided by a whole number less than itself to test if the whole number is a 
factor.  So, for the number 97 we might carry out the following sequence of trial divisions: 

n   97 n    n   97 n    n   97 n    n   97 n    n   97 n   

1 97  21 4.619  41 2.366  61 1.59  81 1.198 
2 48.5  22 4.409  42 2.31  62 1.565  82 1.183 
3 32.333  23 4.217  43 2.256  63 1.54  83 1.169 
4 24.25  24 4.042  44 2.205  64 1.516  84 1.155 
5 19.4  25 3.88  45 2.156  65 1.492  85 1.141 
6 16.167  26 3.731  46 2.109  66 1.47  86 1.128 
7 13.857  27 3.593  47 2.064  67 1.448  87 1.115 
8 12.125  28 3.464  48 2.021  68 1.426  88 1.102 
9 10.778  29 3.345  49 1.98  69 1.406  89 1.09 

10 9.7  30 3.233  50 1.94  70 1.386  90 1.078 
11 8.818  31 3.129  51 1.902  71 1.366  91 1.066 
12 8.083  32 3.031  52 1.865  72 1.347  92 1.054 
13 7.462  33 2.939  53 1.83  73 1.329  93 1.043 
14 6.929  34 2.853  54 1.796  74 1.311  94 1.032 
15 6.467  35 2.771  55 1.764  75 1.293  95 1.021 
16 6.063  36 2.694  56 1.732  76 1.276  96 1.01 
17 5.706  37 2.622  57 1.702  77 1.26  97 1 
18 5.389  38 2.553  58 1.672  78 1.244    
19 5.105  39 2.487  59 1.644  79 1.228    
20 4.85  40 2.425  60 1.617  80 1.213    

 
1.  Is 97 prime?  Is 97 composite?  How do you know?  
 
2.  Why was it unnecessary to trial divide by 4 after having trial divided by 2?  Cross out other numbers 
that were unnecessarily by a similar argument.  What type of numbers are left?   
 
3.   Look closely at the cells n=9 and n=10.  What happens at this point in the trial division process?  Is it 
necessary to check any numbers greater than 9?  Why or why not? 
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Putting It Together:  The previous exploration was meant to give you an opportunity to discover an 
efficient method for testing for primality.  See if you can complete the following two statements to 
put-into-words your discoveries.   Use the pink “Discovery Key” to verify your discoveries 
Discovery 1:  When testing for primality using ordered trial divisions, it is only necessary to test factors 
that are……because……. 
__________________________________________________________________________________ 
__________________________________________________________________________________ 
__________________________________________________________________________________ 
Discovery 2:  When testing a number for primality using ordered trial divisions, it is only necessary to 
test factors that are less than…..because….. 
__________________________________________________________________________________ 
__________________________________________________________________________________ 
__________________________________________________________________________________ 
Summarize your discoveries into a single statement that describes an efficient method for testing for 
primality using trial division: 
__________________________________________________________________________________ 
__________________________________________________________________________________ 
Use your method to test the following numbers for primality: 

1. 173 Prime / Composite 6. 441 Prime / Composite 
2. 171 Prime / Composite 7. 587 Prime / Composite 
3. 331 Prime / Composite 8. 529 Prime / Composite 
4. 323 Prime / Composite 9. 887 Prime / Composite 
5. 463 Prime / Composite 10. 899 Prime / Composite 

 
Reflection 

1. What skills do students need to do this? 

2. How do the skills learned in this investigation related to future learning? 

3. Where does this investigation fit in the learning progression? 
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Discovery 1:  When testing for primality using trial division, it is only necessary to test numbers that are 
prime.  This is because every composite number can be written as the product of primes that precede 
it.  In our example, 2 was not a factor of 97.  This result automatically rules out 6 as a factor because 
every multiple of 6 is also a multiple of 2.  This is because 6 32  . So, we do not have to check 6 (or 
any other even numbers) after we have checked 2.  Every composite number is similarly ruled out! 
Discovery 2:  When testing a number for primality using trial division, it is only necessary to check for 
factors that are less than the square root of the number.  Let’s look at why this is true using our test 

case of 97.  First we compute 97 9.85 .  The table demonstrates that dividing 97 by a number less 

than 9 results in a quotient greater than 9.  Conversely, dividing 97 by a number greater than 9 results 
in a quotient less than 9.  So, 9 is the “tipping point” in terms of how the divisor and quotient “share” 
their portions of 97.  Why can we stop checking at 9?  Well, because any number that evenly divides 97 
will have a quotient that also evenly divides 97, after 9 all the available quotients are eliminated 
because no number less than 9 evenly divides 97.  So, we can stop checking after 9.  
 
 
 
 
 
 
 
 


