

NATIONAL ASSESSMENT OF EDUCATIONAL PROGRESS
Estimate the answer: $\frac{12}{13}+\frac{7}{8}$

ADDITION OF FRACTIONS WITH CONCEPTUAL UNDERSTANDING

CCSS FOR MATHEMATICS

CCSS MATHEMATICAL PRACTICES

MP 4: Model with Mathematics

- Apply mathematics to solve problems arising in everyday life
- Interpret mathematical results in the context of the situation
- Reflect on whether the results make sense

CUISENAIRE RODS - LET'S GET TO KNOW THEM

Let's invent a new rod: red-orange.
We can call it rorange!

ETA

CUISENAIRE RODS - LET'S GET TO KNOW THEM

ADDITION

Suppose rorange is 1 .
How can you name some of the other rods?

ETA

CONTEXTUAL PROBLEM

Lisa lives $1 / 2$ of a mile from the French Quarter.
Jenny lives $1 / 3$ of a mile farther.
How far is Jenny from the Quarter?

How would you use Cuisenaire rods to model this?
What is the operation?

- How can you model $1 / 2$? $1 / 3$?

What's the whole? How do you choose?

ADDITION

Add fractions with unlike denominators.
$\frac{1}{4}+\frac{1}{2}$
$\frac{1}{2}+\frac{1}{3}$

What do you have to consider?
Can you generalize a rule?

CONTEXTUAL PROBLEM

Marie lives $1 / 2$ of a mile from the beach. Joe lives $1 / 4$ of a mile from the beach. How much closer to the beach is Joe than Marie?

What is the meaning?

How can you model it?

SUBTRACTION

What does 10-4 mean?

- Take away or separate
- Comparison
- Missing addend

SUBTRACTION

$$
\frac{1}{2}-\frac{1}{3}
$$

Pat has one half of a pie left in the refrigerator.
For lunch Pat eats one third of the pie.
How much pie does Pat have left?

MULTIPLICATION

MULTIPLICATION
What is the meaning of each?
What is the meaning of each?
Can you build a model? Can you tell a story?
$\frac{1}{4} \times 8$
$\frac{2}{3} \times 9$
$\frac{1}{3} \times \frac{3}{5}$
$\frac{2}{3} \times \frac{3}{5}$

HOW MUCH IS $\frac{3}{4}$ OF $\frac{2}{3}$?
John and his little brother mow the lawn together
John agrees to mow $\frac{2}{3}$ of the lawn. When they stop for
lunch, John sees that he has finished $\frac{3}{4}$ of his section.
How much of the lawn has John done? ${ }^{4}$

Start with a model of $\frac{2}{3}$. Partition it into fourths.
Hint: rorange is a good whole to start with.

CONTEXTUAL PROBLEM

At the end of the day, a bakery had one-half of a loaf of french bread left. The three employees split it up, with each taking home the same amount. How much of a loaf did each employee take home?
-What is the operation?
-How would you use Cuisenaire rods to model this?

CONTEXTUAL PROBLEM

DEVELOPING THE ALGORITHM: DIVISION
How can you think about
$A \div B$?

How many groups of B are in A ?
How long will the job take them?
-What is the operation?
-How would you use Cuisenaire rods to model this?

DEVELOPING THE ALGORITHM: DIVISION
$A \div B=\frac{A}{B}$
$\frac{A}{B}=\frac{A \cdot \frac{1}{B}}{B \cdot \frac{1}{B}}=\frac{A \cdot \frac{1}{B}}{1}=A \cdot \frac{1}{B}$
$A \div B=A \cdot \frac{1}{B}$

ALTERNATIVE ALGORITHM
What does this mean? $\frac{2}{3} \div \frac{1}{6}$
Divide fractions by finding common denominators:
$\frac{2}{3} \div \frac{1}{6}=\frac{4}{6} \div \frac{1}{6}=\frac{?}{?}$

