

PK-5 Gallery Workshop

CCSSM Areas:	Geometry Operations and Algebraic Thinking
Grade Band/Audience:	Grade PK-2, Grade 3-5
Focus on Math:	To model project-based learning, attendees will design and construct a bridge made out of different materials (e.g., toothpicks, cardstock, sticks, gummy drops, marshmallows). Participants will have to consider what materials to use to create a strong and stable bridge while minimizing the cost. They will have the opportunity to describe their physical world using geometry and operations and algebraic thinking. They will use basic shapes, spatial reasoning, and place value to model objects in their environment.

Presenters:

Rita Sanchez rds2133@tc.columbia.edu Greta Keltz gak2116@tc.columbia.edu

Javier Builds a Bridge

"Javi, wait for me!" my little stepsister whined-but I kept running. Reaching the riverbank, I leaped onto the rope and plank footbridge. It wobbled and rocked side to side under my feet. I jumped off the bridge and grabbed the sweet gum tree branch hanging low over my head. I dangled and then let myself drop onto the pebbly bank, ready to run. I couldn't wait to get to my fort. I wanted to finish painting it before the big family party we were having the next day. Everyone was coming to our house in Texas to celebrate the anniversary of Abuelita and Abuelito, my grandparents.

"Javi!" Luisa called. I wanted to leave her there, but something made me stop. I turned around. At the opposite bank, she put a little white sneaker on a plank of the bridge and pulled it back. The bridge was still swaying from my leap. Her face was wet with tears.

I groaned. "Don't you want to go color? You can use my markers."

"Javi!" she sniffled.

"All right, wait a second." I walked back to take her hand. The stream flowed brown beneath us. Luisa peered between the boards. Her body stiffened as she watched the water. "Come on, you're a big girl," I said—but I was really thinking about how little she was. Being a new big brother wasn't always as much fun as I had thought it would be. Before Mamá married Joe, I used to be able to play by myself on the island. Now Joe's daughter, Luisa, followed me everywhere.

Luisa was inching slowly across the bridge. I was in a hurry. "Look, Luisa, why don't you let me carry you the rest of the way?" I asked. I bent down to pick her up but she pulled away. The bridge tottered and lurched. Plunk! Splash! We were in the water.

Images and excerpt taken from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

Create and Test the Original Bridge

Stability Score	vility How many times did the wind-up toy successfully roll across your bridge?		How many weights did your bridge hold before it failed?
1	1 time	1	fewer than 2 weights
2	2 times	2	3-4 weights
3	3 times	3	5-6 weights
4	4 times	4	7-8 weights

After testing the Original Bridge, what can you conclude about its design and construction?

Improve your Bridge

How will you improve the Original Bridge design?

Adapted from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

The New and Improved Bridge

Being a new stepbrother to little Luisa isn't always as much fun as Javier first thought it would be. When Luisa falls off the bridge leading to Javier's fort, his mother tells him they'll have to take the bridge down.

After some careful thinking, Javi realizes that he might be able to convince his parents to let him keep the bridge to his fort if he can design a safer one. Javi will have to come up with a new bridge design. But will it pass the inspection of his stepfather Joe, a real civil engineer?

How can you help Javi? How can you use your knowledge of materials and their properties and different bridge trusses to design a strong, stable bridge and help Javi out?

Use your creativity and knowledge of bridges to design and construct a scale model of a strong, stable bridge. Remember to think like a Civil Engineer. Good luck!

Imagine and Plan your Bridge

Brainstorm some different bridge designs. Draw and label your bridge. List the materials that you will need. Show where you will use each material.

Requirements:

Span: <u>a distance of 8 in</u> Width: _____

Taken from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

m i n d t h e g a p BRIDGING GEOMETRY AND NUMBER SENSE

Plan your Bridge: Amount and Cost of Materials

Material	Packs of Tens	Loose Ones	Total
Toothpicks			
Gum drops			
Long Sticks			
Short Sticks			
Marshmallows			

Material	Dollars	Dimes	Pennies	Total cost per unit (\$)	Units	Total Cost of Material
Toothpicks				1.34		
Gum drops	1	7	5			
Long Sticks				3.68		
Short Sticks	2	6	3			
Marshmallows	0	9	2			

Total Cost of Bridge Design:_

Types of Bridges

The beam bridge...

consists of a horizontal beam supported at each end by piers. The weight of the beam pushes straight down on the piers. The farther apart its piers, the weaker the beam becomes. This is why beam bridges rarely span more than 250 feet.

Lake Pontchartrain Causeway, Louisiana

The arch bridge...

has great natural strength. Thousands of years ago, Romans built arches out of stone. Today, most arch bridges are made of steel or concrete, and they can span up to 800 feet.

Natchez Trace Bridge, Tennessee

The suspension bridge...

can span 2,000 to 7,000 feet – way farther than any other type of bridge! Most suspension bridges have a truss system beneath the roadway to resist bending and twisting.

Images taken from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin. Facts about bridges taken from <u>http://www.pbs.org/wgbh/</u> <u>buildingbig/bridge/basics.html</u>

Golden Gate Bridge, San Francisco

Bridge Design Specifications

Create a Toothpick Bridge

Truss Bridge Designs

Camelback

Double Intersection Pratt

Baltimore

Pennsylvania

Warren

Double Intersection Warren

3rd Grade Rubric

Students will be able to	4	3	2	1
Test the strength and		Tests are carefully conducted	Tests are somewhat well	Does not successfully test
stability of the Original		and recorded; analyses	conducted and recorded;	and analyze his/her bridge
bridge design and analyze		his/her bridge design for	analyzes a few aspects of	design.
test results		strengths and weaknesses.	his/her design, but may need	
			significant support.	
"Improve" the Original		Identifies ways to improve	Brainstorms a few ways to	Is not able to brainstorm
Bridge design based on		his/her bridge design and	improve his/her bridge	ways to improve his/her
testing results and		explains how they are based	design, but does not take	bridge design.
analysis		on test results.	testing results into	
			consideration. May require	
			significant support.	
Utilize what they have		Correctly and completely	Uses some prior knowledge of	Does not successfully use
learned about different		utilizes what he/she has	bridge types and shapes and	what he/she has learned to
bridge trusses and the		learned about bridge types	their properties to inform	inform a bridge design.
properties of shapes to		and properties of shapes to	bridge design. Not all	
design and construct a		inform a bridge design	information is correctly used,	
strong, stable bridge			or student requires significant	
			support.	

Adapted from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

4=Exceeds Standards 3=Meets Standards 2=Almost Meets Standards 1=Beginning to Meet Standards

3rd Grade Rubric

Students will be able to	4	3	2	1
Build and draw triangles		Identifies the defining	Identifies some defining	May be able to draw and
and squares to possess		attributes of the triangle	attributes of the triangle	identify triangles and squares,
defining attributes		(e.g., closed figure, three	(e.g., closed figure, three	but is not able to articulate
-		straight sides, three sharp	straight sides, three sharp	any defining attributes.
		corners/vertices) and of the	corners/vertices) and of the	
		square (e.g., closed figures,	square (e.g., closed figures,	
		four straight congruent sides,	four straight congruent sides,	
		opposite sides are parallel,	opposite sides are parallel,	
		four sharp corners/vertices,	four sharp corners/vertices,	
		four right angles).	four right angles). May	
			require significant support.	
Decompose and compose		Determines the packs of ten	Determines the packs of ten	Is not able to group materials
two-digit numbers using		and loose ones of each type	and loose ones of each type	into packs of ten and loose
place value		of material that is needed to	of material that is needed to	ones in order to determine
		construct the bridge.	construct the bridge.	the total amount of each
		Determines the total amount	May require support to	material.
		of each type of material.	determine the total amount of	
		Decomposes the cost of	each type of material;	
		materials in dollars, dimes,	decomposes the cost of	
		and pennies.	materials in dollars, dimes,	
		Uses the total amount of	and pennies; and	
		dollars, dimes, and pennies to	uses the total amount of	
		determine the unit cost of the	dollars, dimes, and pennies to	
		materials.	determine the unit cost of the	
			materials.	

Adapted from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

4=Exceeds Standards 3=Meets Standards 2=Almost Meets Standards 1=Beginning to Meet Standards

5th Grade Rubric

Students will be able to	4	3	2	1
Test the strength and		Tests are carefully conducted	Tests are somewhat well	Does not successfully test
stability of the Original		and recorded; analyses	conducted and recorded;	and analyze his/her bridge
bridge design and analyze		his/her bridge design for	analyzes a few aspects of	design.
test results		strengths and weaknesses.	his/her design, but may need	
			significant support.	
"Improve" the Original		Identifies ways to improve	Brainstorms a few ways to	Is not able to brainstorm
Bridge design based on		his/her bridge design and	improve his/her bridge	ways to improve his/her
testing results and		explains how they are based	design, but does not take	bridge design.
analysis		on test results.	testing results into	
			consideration. May require	
			significant support.	
Utilize what they have		Correctly and completely	Uses some prior knowledge of	Does not successfully use
learned about different		utilizes what he/she has	bridge types and shapes and	what he/she has learned to
bridge trusses and the		learned about bridge types	their properties to inform	inform a bridge design.
properties of shapes to		and properties of shapes to	bridge design. Not all	
design and construct a		inform a bridge design	information is correctly used,	
strong, stable bridge			or student requires significant	
			support.	

Adapted from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

4=Exceeds Standards 3=Meets Standards 2=Almost Meets Standards 1=Beginning to Meet Standards

5th Grade Rubric

Students will be able to	4	3	2	1
Build and draw triangles		Constructs a conjecture about	Constructs a conjecture about	Is unable to construct a
and squares based on the		the 2-D shapes and the	the 2-D shapes and the	conjecture about the 2-D
category they belong to		categories they belong to.	categories they belong to, but	shapes and the categories
		The conjecture uses the	the conjecture only uses	they belong to.
		defining attributes of the	some of the defining	
		triangle (e.g., closed figure,	attributes of the triangle	
		three straight sides, three	(e.g., closed figure, three	
		sharp corners/vertices) and	straight sides, three sharp	
		of the square (e.g., closed	corners/vertices) and of the	
		figures, four straight	square (e.g., closed figures,	
		congruent sides, opposite	four straight congruent sides,	
		sides are parallel, four sharp	opposite sides are parallel,	
		corners/vertices, four right	four sharp corners/vertices,	
		angles).	four right angles).	
Decompose and compose		Determines the packs of ten	Determines the packs of ten	Is not able to group materials
two-digit numbers using		and loose ones of each type	and loose ones of each type	into packs of ten and loose
place value		of material that is needed to	of material that is needed to	ones in order to determine
		construct the bridge.	construct the bridge.	the total amount of each
		Determines the total amount	May require support to	material, and may need
		of each type of material.	determine the total amount of	significant support to
		Decomposes the cost of	each type of material;	determine the total amount of
		materials in dollars, dimes,	decomposes the cost of	each type of material.
		and pennies.	materials in dollars, dimes,	
		Uses the total amount of	and pennies; and	
		dollars, dimes, and pennies to	uses the total amount of	
		determine the unit cost of the	dollars, dimes, and pennies to	
		materials.	determine the unit cost of the	
			materials.	

Adapted from "Javier Builds a Bridge". Written by the Engineering is Elementary Team. Illustrated by Jeannette Martin.

4=Exceeds Standards 3=Meets Standards 2=Almost Meets Standards 1=Beginning to Meet Standards