Mathematical Discourse
 from Question Asking to Question Answering

General guidelines and specific ideas for promoting and implementing effective mathematical discourse in the classroom.

Meaningful Mathematical Discourse

Classroom discourse develops students' understanding of key ideas. Student dialogue provides additional information and engages students in deeper understanding and reflection, and ultimately promotes greater conceptual development.

Adapted from Adding It Up 2001 and Nathan \& Kim 2007

Discourse and Writing in the CCSS Mathematical Practices

Students . . . understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements, They justify their conclusions, communicate them to others, and respond to the arguments of others . . . making plausible arguments that take into account the context from which [they] arose.

Students . . . communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose. . . . By the time they reach high school they have learned to examine claims and make explicit use of definitions.
-From CCSSM Mathematical Practice Standards 3 and 6

Discourse in Math

Math discussions differ from discourse/discussions in other content areas.

- In many content areas the point of discussion is often to express and support opinions and ideas.
- In math the point of discussion is usually to determine and prove a correct answer, or to recognize and describe mathematical relationships.

Initiate, Manage, and Connect \& Conclude Discourse

- Initiate -

Getting discourse started

- Manage -

Getting students to engage and persevere

- Connect \& Conclude -

Getting the mathematical point across

Initiate, Manage, and Connect \& Conclude Discourse

Initiate

- Formation - questioning and posing problems
- Foundation - students ready to engage in dialogue (knowledge base, attitude, setting, expectations)

Initiate, Manage, and Connect \& Conclude Discourse

Manage

- Know when to hold them - leave it alone and let them work
- Know when to scaffold them - managing the room, scaffolding, extensions, etc.. Combination of guide on the side and sage on the stage as you work and walk the room.

Initiate, Manage, and Connect \& Conclude Discourse

Connect \& Conclude

- Selection - decided which student work and ideas to share with the whole class
- Connection - connect student work/ideas together, connect to the mathematics, and connect to the lesson objective

Initiating Discourse - Formation Rich Tasks and Deeper Level Questions

Polygon Capture Game (from NCTM IIIuminations)

Especially good for discourse when you have two students work as a team competing against another team of two students.

Polygon Capture
game polygons

File Cabinet Problem

 (from Dan Meyer as shared on NCSM under Three-Act Math)> How many sticky notes will it take to cover this entire cabinet? What is your guess? Share your guess with your neighbor and say why you think it is so.
http://www.mathedleadership.org/resources/ threeacts/filecabinet.html
http://blog.mrmeyer.com/category/3acts/

Mr. Torres Sports Cards (from SMARTER Balance -SBAC)

Mr. Torres sold a total of 30 boxes of sports cards at his store on Monday. These boxes contained only baseball cards and football cards.
\square Each box contained 25 sports cards.
\square He earned $\$ 3$ for each sports card he sold.
\square He earned a total of $\$ 1,134$ from the football cards he sold.
What amount of money did Mr. Torres earn from the baseball cards?

- Smarter Balanced Assessment Consortium (SBAC). Downloaded from http://www.smarterbalanced.org/sample-items-andperformance-tasks/.

activity Always, Sometimes, or Never

A. When is the following statement always true, when is it sometimes true, and when is it never true?

Subtraction results in a lesser value. In other words, If $\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}=\boldsymbol{c}$, then $\boldsymbol{c}<\boldsymbol{a}$.
B. When is the following statement always true, never true, and sometimes true?

$$
\text { If } \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\boldsymbol{d} \text {, then } \boldsymbol{d} \text { is a multiple of } 5 .
$$

C. When is the following statement always true, never true, and sometimes true?

$$
\frac{a}{b}<\frac{b}{a}
$$

T-shirt Sale (from map.mathshell.org)

T-shirt Sale: Any 3 T-shirts for $\$ 14.50$

1. Tom bought these three T-shirts at the sale price of $\$ 14.50$.

How much money did he save compared to the original total price of the T-shirts? Show your calculations. \qquad
2. What percentage of the original total price did Tom save? \qquad \% Show your work.
3. Harry also paid $\$ 14.50$ for three T-shirts at the sale. The sale price saved Harry 30% of the original price of the three T-shirts. What is the original total price of his three T-shirts? \$ Show your calculations.

activity
 Hess' Cognitive Rigor Matrix

Applying Webb's Depth-of-Knowledge Levels to Bloom's Cognitive Process Dimensions

Revised Bloom's Taxonomy	Webb's Depth of Knowledge Levels			
	 Reproduction	 Concepts	3 Strategic Thinking/Reasoning	4 Extended Thinking
Remember				
Understand				
Apply				
Analyze				
Evaluate				
Create				

Initiating Discourse - Processes or Input for Student Thinking

Process Focus Type of Question Associated with Discourse Focused on Process

Plan
Explore
Apply
Model
Analyze
Compare
Conjecture/Predict What will happen if . . . ?
Translate/Interpret What does this graph tell us?

How will you solve this?
What have you discovered?
How did you solve this?
Which model best represents this?
How is this connected to . . . ?
What are similarities and differences?

Levels of Discourse - Outcomes or Output from Student Thinking

Output Level

Type of Question Associated with Discourse Focused on Output

Confirm
Recall
Explain
Justify
Generalize
Prove

Is it true?
What is it?
How did you get the answer?
Why is it true?
Is it always true?
What is the evidence that it is true?

Initiating Discourse - Foundation

Build Productive Struggle on Productive Success

Productive struggle

Success with being productive

Initiating Discourse - "Scratcher" Strategy

1. What is $1 / 2$ of 50 ?
A. 5
B. 10
C. 100
D. 75
E. 25
2. Which of the following is true?
A. $0^{0}=0$
B. $0^{0}=1$
C. 0^{0} is undefined
D. 0^{0} does not exist
E. 0^{0} is infinite

Initiating Discourse - "Scratcher" Strategy

Work with a partner - choose the correct answer on the handout and scratch it off. If incorrect, discuss some more and choose again.
3. Arrange the fractions in order from least to greatest without making common denominators or using decimals.

$$
\frac{7}{8}, \quad \frac{7}{9}, \quad \frac{13}{15}
$$

4. When is the following statement never true?

$$
\begin{array}{r}
\text { If } \boldsymbol{a}-\boldsymbol{b}=\boldsymbol{c} \text {, then } \boldsymbol{c}<\boldsymbol{a} . \begin{array}{c}
\text { (Subtraction results in a } \\
\text { lesser value.) }
\end{array}
\end{array}
$$

5. How many times should you tickle an octopus?

Managing Discourse

Manage the classroom + Manage the math =
Opportunities for meaningful discourse

Managing Discourse－

Levels of Classroom Discourse from Hufford－Ackles，Fuson， and Sherin（2014）

	Tasenciaryalis	Qur－ationingi	Explaining nothemeticel thinking	Mathornatien ceprathotationt	reuponsibility brithiow thic cammunits
Lavel 0	Tanc－－is a：the fron：c^{*} －ntras annorsaio	tacher is coly yues－ ic 1er．Qucn－je－s smats os＜\rightarrow sterdents liser texpcic ter evchos enly．	Teanci－cer cquastions trans an co．$\%$－ SLucterts provid＝＝tet answar－tr－－sard re－ sunises Imactier noy． gios an＝ックr：．	Teprosontzt た－s are s：hows then to s－uhants．	
Langl 1	－7．rines st re－th Hes\％ ज16－Jitruts＝veaker r tale to the cass．net $\mathrm{t}=$ th \rightarrow t－acher collg．	＂ucher cuestions bos s－to tocus en＝lusiert ．lin iking zermd ke：a：：an aとくらどuct：liza！：	Trantsr arsil－s \＆tumen： bex $\quad 1 \%$ tued．Iuscticer rnsy f in ar nxp an＝－ien Slualet ha Muricit taiei de：aript on＝ott－～－ t）$-k \operatorname{lng}$ o $r \div=10 \cdot \boldsymbol{H}$ tcadthat procstiris！	Studaniz letroterertis thes nather ant：ce． thirki＂g．	Bilderts zeliene ther＝ 「ヨノ ミュ J．
Lewol 2	Tear．\div facliivatss sell－ Hantz，ant anco wayps 	＝achtel a：k：pecitsinc： r．Eertion an ane terilitat： sulne stcelartion $=$－ulumt ivリッ 心「心． x＋• arrorroting fram ：esch \ddagger ：	Thaschsr armbon noars studernt th ir cing．Temer－ e^{\prime} eliciss mi $\mid t i p l e q d e l t$ ta tantiral arrol：u！\rightarrow m： धulumituer it ce－Itrothin！ St ：c－lerts hogiin to：＜le－ ferle ti ci－ortiswars．	Studen：s lzoel Jyen et vars ar＝niola ta talles thinki r ．	St．der $t=$ selizerilnt t1－：insc：：：nt t－e relises－ 1 lrave litien iec－i．cel $\gamma=\infty$ tr э：Jevec：\because ort＇sult
Lewel 3	 Thac．－c．se v flodrs \therefore Crs to forstu．ledts 	Stuctent－6．ash leat ：：Ik is ：：thrd：ot ir tineral Stuilsuls $==k$ yuestiunt es．h－dary questicns ius－it cation Tharyar 	｜uscter fo lives standent Mxplann－inerserkaty Stacle Is Jefene ank instify hasir arsowers with lit le aramptilig fivir t＊e t：arher．	situden－s－sllow anm ：arzistisan：n orthr sugcest eflits in－sthers rwah dras－g：	St．oInt ablierfe II＝－ 戸ar．č－トに 0 shijiet tro tt if＜ing ${ }^{\circ}=$ spewit †－ corl c：

Fig．11．Levels sf classroom discourse．From Hufford－Ackles，Fusan，and Sherin（2014），table 1.

Managing Discourse - Hold or Scaffold Prepare for both

The perimeter of the rectangular state park shown is 42 miles.

A ranger estimates that there are 9 deer in each square mile of the park.

If this estimate is correct, how many total deer are in the park? Explain your answer using numbers, symbols, and words.

PARCC Grade 4 Sample (http://www.ccsstoolbox.com/parcc/PARCCPrototype_main.html)

Deer In Park - Scoffold Questions

Sample of teacher work:
$42-8=34$
$34-8=26$
$26 / 2=13$
$8 \times 13=104$
$104 \times 9=936$ deer.

- Why did you start by subtracting 8?
- What does the 34 represent?
- What does the 13 represent?
- What does the 104 represent?
- Why multiply by 9 rather than divide or add?

Managing Discourse - Hold or Scaffold

1. If the hexagon represents one whole, what fraction do
a) All the triangles represent together?
b) All the trapezoids represent together?
c) All the rhombi represent together?

Explain your reasoning.
2. What total value do all four shapes represent together?

What would be a good extension for added discourse that would likely challenge students reasoning and allow you to see how they are understanding fractions with these shapes?

Connect and Conclude Discourse Anticipating Responses

Mental math:

Subtract 385 from 529, that is 529 minus 385.
Do this in your head - no writing and no calculators.

- Standard subtraction algorithm?
- Counting on strategy, that is, started at 385 and counted up to 529?
- Counted by 100s, $385,485,585$, then counted from their to 629 ?
- $385+15$ is 400 , then 400 to 629 is 229 , and $229+15$ is 244 (may have done in steps, such as $200+15+29$ is 244 ?"
- Counted down from 629 to 385 ?
- Counting down using 385 from 629 or 600 (with convenient numbers?)?

Steps for Meaningful Discourse

1. Initiate with a question or prompt that is focused on processes and/or outcomes that promote DOK 2-3.
2. Focus on the why behind the what.
3. Provide time to think.
4. Provide time to discuss.
5. Manage process for sharing and connecting ideas.
6. Make mathematical connections explicit.
7. Always ask, "Why does this make sense?"

Thank you!

Dean Ballard
 dballard@corelearn.com

www.corelearn.com

