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Abstract: We focus on development of students’ early expression of covariation and 

correspondence (functional) relationships through instructional tasks supporting 

generalization of pattern relationships. We present a teaching experiment conducted 

in a 5th grade classroom, and explore students’ expressions of those relationships. 

Implications for CCSS-M implementation and research are also discussed.  

A focus on Early Algebra  

Present in all the definitions of algebra and algebraic reasoning is the concept 

of generalization. Students’ generalizing should become more sophisticated over time 

as their focus gradually shifts “from thinking about relations among particular 

numbers and measures toward thinking about relations among sets of numbers and 

measures, from computing numerical answers to describing and representing relations 

among variables.” (Carraher, Schliemann & Schwartz, 2007, p. 266). That is, students 

come increasingly to recognize the “general through the particular” and “the 

particular in the general” (Mason, Graham & Johnston-Wilder, 2005).  

 The aim of early algebra instruction in elementary schools include providing 

students the opportunity to establish the foundations for development of algebraic 

reasoning in middle and high school and building proficiency in constructing and 



interrelating different representations of mathematical situations, especially those 

involving unknown quantities. Longitudinal studies in classrooms have shown that 

elementary school students are capable of (a) representing unknown quantities using 

variables and solve equations with variables on both sides of the equality; (b) thinking 

about relations among sets of numbers and measures and describe and represent 

relations among variables; (c) solving problems using multiple representations such as 

tables, graphs, and equations and inter-relate different representations of functions 

(Brizuela & Earnest, 2008; Brizuela & Schliemann, 2004; Carraher & Schliemann, 

2007; Carraher, Schliemann, & Schwartz, 2007; Carraher, Martinez & Schliemann, 

2008; Schliemann, Carraher, & Brizuela, 2007; Schliemann et al., 2003).  

The Common Core State Standards for Mathematics (CCSS-M, 2010) specify 

that 5th Grade students should be able to identify relationships between two patterns--

what we may refer to as functional relationships (Standard 5.OA.B.3). Conventional 

functions curricula are dominated by defining relationships between two patterns via a 

rule, describing how to find y or f(x) given a particular value for x (i.e. y = 4x +1). 

This type of relationship is called a “correspondence” description of the relationship 

between two patterns (Confrey & Smith, 1995). Seeking a more balanced approach to 

the function concept, Confrey and Smith (1995) suggested that a second type of 

functional relationship, the “covariation” between quantities, should also be 

emphasized. A covariation description of the relationship between two patterns shows 

how a quantity in one pattern changes at the same time as a quantity in the other 

pattern changes: how x1 changes to x2 and how y1 changes to y2 simultaneously. 

Explaining how the values of the two patterns change simultaneously is foundational 

for the development of the correspondence rule (Blanton & Kaput, 2011; Confrey & 

Smith, 1991, 1994, 1995).  



Elementary students are capable of reasoning about covariation and 

correspondence relationships (Blanton, & Kaput, 2004; Martinez & Brizuela, 2006; 

Stephens et al., 2012), so a challenge is to synthesize research on early algebra to 

inform the design of instructional tasks that promote the development of both types of 

relationships. The aim of the study described here is to satisfy teachers’ requests for 

“creating a ‘story’ that illustrates how the ideas are likely to evolve in the minds of 

students when they are provided appropriate curriculum tasks, instruction, and 

opportunities for discourse” (Confrey 2012, p. 4). 

The design study 

Following this theoretical framework, we designed a sequence of tasks that 

would stimulate students to reason about and distinguish between covariation and 

correspondence relationships (Figure 1). We intended to examine how students’ 

thinking progresses with regard to these relationships, using a sequence of easier to 

more sophisticated tasks, each represented in a different contextual problem.  

 

Figure 1: Sequence of task types 

The purpose of this structure was for students to gain experience exploring 

covariation and correspondence relationships, using a variety of arithmetic and 

Covariation 
and 

Correspondence

Two arithmetic patterns not 
starting from 0 where the first one 

is natural numbers.

Two arithmetic patterns starting 
from 0 where the first one is 

natural numbers

One arithmetic pattern and one 
geometric

One arithmetic pattern and one 
geometric with fractional values

Two arithmetic patterns, one of 
them is a decreasing pattern



geometric sequences, all of which lay a strong foundation for the development of ratio 

and functions in middle school (Carraher & Schliemann, 2007; Zazkis & Liljedahl, 

2002). Each contextual task included opportunities for students to describe 

relationships both within and between numerical patterns, and to establish distinctions 

between covariation and correspondence relationships, using models, such as 

diagrams and tables, verbally, symbolically (using letters as variables), and using 

graphical representations. 

The curriculum used was based on the Early Equations and Expressions 

learning trajectory presented in the TurnOnCCMath.net project (Confrey et al., 2011), 

which unpacks the contents of the CCSS-M standard 5.OA.B.3. The descriptor 

introduces the distinction between covariation and correspondence relationships 

through contextual problems, aiming to “situate and deepen the learning of 

mathematics and generalizations and the use of multiple representations” (Carraher, 

Martinez, & Schliemann, 2008, p. 6). 

Using a design research approach (Cobb, Confrey, Lehrer, & Schauble, 2003), 

we conducted a 6-day teaching experiment in a classroom of eighteen 5th graders in 

an elementary school in North Carolina. The students had already had some 

experience with arithmetic and geometric patterns, little experience in plotting 

ordered pairs on coordinate plane, and no formal instruction on expressing 

relationships between patterns according to their regular classroom teacher. Data from 

this work were comprised of video recordings and observation notes from classroom 

interactions during instruction, and student written work. 

In this paper we present different strategies, justifications, names and 

mathematical relationships that students used as they engaged with one of the 



contextual problems, one involving two arithmetic patterns beginning from 0 (Figure 

2).  

 

Figure 2: The Roadrunner Problem 

 The Roadrunner Problem was the third contextual problem presented to 

students. All contextual problems followed the same structure.  Students were told 

they had to develop a strategy for solving the problem, and no instructional guidance 

was initially provided with regard to solution strategies (see question ‘a’ above). The 

aim of the introductory question was to examine students’ prior knowledge (which 

now included their work on the preceding two tasks) and to learn what strategies they 

would begin with if no further guidance was provided. Students typically extended the 

shape/drawing pattern given to them, used calculations, or drew tables. Subsequent 

questions were designed for students to gain experience in reasoning about the 

relationships with multiple representations: students were asked to complete a table, 



express the relationships in words, apply those relationships to find a different value 

of distance, and represent those relationships on a dynagraph and a coordinate graph.   

Expressing Covariation and Correspondence 

In the following paragraphs we present examples of students’ expressions of 

the covariation and correspondence relationships as they described those using tables, 

using words (written language), using variables, and comparing representations 

(dynagraphs and graphs): 

Functional relationships in tables: For each task, “relationships” tables were offered 

as a tool for solving the problems. These were incomplete tables that included column 

breaks similar to Schliemann et al.’s function tables (2001). We also added a middle 

column, the “Rule”, for students to describe the correspondence relationship between 

the two patterns and we introduced the two types of relationships by showing them 

visually on the tables (Figure 3).  

 

Figure 3: “Relationships” tables.  

Correspondence

Covariation Covariation



Students first identified the “rule” of each pattern independently (e.g. the first 

column’s values increase by 2, the second’s increase by 3). This involved their 

recognizing that the patterns change simultaneously, suggesting a covariation 

relationship (i.e. the time quantity increases by 2 as the distance increases by 3). This 

strategy sufficed for completing the table down to a column break.  The breaks in the 

columns, where values of the patterns increased by more than a single increment, 

were intended to draw attention to the relationships between the two patterns (i.e. to 

find the distances corresponding to the times 30s and 100s (Figure 3) it might be 

easier and, in the long run, more efficient to generate a more general strategy to relate 

the two patterns directly, instead of identifying every value in both patterns). Students 

were able to find the distance corresponding to 30s using covariation but this strategy 

proved inefficient for finding the distance when time was 100s. Some students 

continued with a covariation strategy, but most tried to identify a rule that related the 

two patterns, as a shortcut. Some students considered a recursive rule (e.g. in the 

example above +1, +2, +3, etc.), but noticed that it was not helpful for finding higher 

values, because this rule is not the “same” (invariant) for each corresponding pair of 

numbers. 

Functional relationships in words: The table served as a starter for class discussion 

about expressing relationships between the two patterns in words. Students generally 

found the covariation approach easier and more intuitive. Many students expressed 

both relationships verbally, which helped them to draw distinctions between the two 

types of relationships (Table 1): 

 

 



Table 1: Examples of students’ expressions of relationships in words 

Explanation Student sample 

Covariation & 

Correspondence 

 

Correspondence 

only 

 

Covariation 

only 

 

 

Expressing correspondence using variables: Verbal descriptions of the relationships 

act as the connecting link between context and symbolic representation (Van de Walle, 

Karp, & Bay-Williams, 2013). We introduced word and then letter representations as 

a shortcut asked the students to write equations to represent their relationships in 

words. Though 5th-grade students are not expected by the Common Core Standards to 

write symbolic equations for these types of relationships, our experience was that 

students were capable of expressing the correspondence relationship using words and 

letters as variables. Some students created equivalent expressions after finding the 

rule (Table 2).  

 

 



Table 2: Examples of students’ expressions of correspondence using variables 

Level Description Student Sample 

3 Using letters 

and creating 

equivalent 

expressions 
 

2 Using letters 

as variables 

 

1 Using words 

as variables 

 

 

Expressing relationships in different representations: Considering it important that 

students use multiple representations to compare covariation and correspondence 

relationships, we asked students to represent the function table values as ordered pairs 

on a dynagraph and a coordinate graph, and describe what they saw in those 

representations. Dynagraphs and coordinate graphs both model the one-to-one 

correspondence of the functional relationship, and illustrate linear and 

increasing/decreasing qualities of such relationships. Most of the students described 

the covariation relationship in a graph qualitatively or quantitatively. A few of them 

mentioned the correspondence rule as defining the “line” created in the graph; some 

described both relationships (Table 3). 

 

 



Table 3: Examples of students’ expressions of relationships in graphs 

Level Description Student sample 

4 Correspondence 

and Covariation 

 

3 Quantitative 

Covariation and 

viewing the 

relationship as a 

line 

 

2 Quantitative 

Covariation  
 

1 Qualitative 

Covariation 
 

 

Comparing representations: Each representation--table, equation, graph, or 

dynagraph--provides a different way for students to examine and compare the 

relationships. By the end of the teaching experiment, students were able to describe 

whether a dynagraph and graph involved arithmetic or geometric patterns and whether 

they were increasing or decreasing. While comparing the different graphs created 

throughout the teaching experiment, some of the students’ generalizations included “If 

it is arithmetic it is going in a angle while if it is geometric if it going in a curve” (in 

graphs), or “If it is decreasing/increasing [arithmetic], the line is going down/up”, or  

“Curves involve multiplying or division.” Although these are not sophisticated 



mathematical generalizations, we anticipate that identifying connections between 

those representations may lead to deeper understanding and flexible reasoning about 

functions at a later stage (Carraher, Schliemann, Brizuela, & Earnest, 2006; 

Hackbarth & Wilsman, 2008; Van de Walle et al., 2013). 

Discussion and Implications  

This study aimed to give additional insight into students’ conceptual 

development of functional relationships based on research on student learning, 

facilitating the use of distinct but related strategies (covariation and correspondence), 

models, and representations. It showed that students were able to describe both the 

covariation and correspondence relationships of two patterns. We also have noticed 

that the more contextual problems the students were solving, the more they seemed to 

answer the first question (the one examining prior knowledge) using covariation 

and/or correspondence strategies.  

We believe contextually-based instructional experiences based on describing 

covariation and correspondence relationships between two patterns can support 

students in developing robust understanding of functional relationships. As Confrey 

(2012) argued “the success of the CCSS-M rests on its potential to support alignment, 

including curriculum, assessment (formative and summative), and professional 

development, at a level not previously possible” (p. 4-5). Consequently, we believe 

that by providing instructional opportunities based on those findings, teachers can 

support students in developing functional relationships through contextual tasks. 

These experiences may establish a robust foundation for more advanced 

understandings of functions at a later stage. 
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