Work Stations 101: Grades K-5 NCTM Regional Conference 11.20.14 & 11.21.14

Janet (Dodd) Nuzzie, Pasadena ISD District Instructional Specialist, K-4 Mathematics President, Texas Association of Supervisors of Mathematics jdodd@pasadenaisd.org

Great Math at Your Doorstep www.nctm.org/houston

Tips for a great conference!

Rate this presentation on the conference app **www.nctm.org/confapp**

Download available presentation handouts from the Online Planner! www.nctm.org/planner

Join the conversation! Tweet us using the hashtag #NCTMRichmond

- Welcome!
- Our Goal:
 - Explore the "basics" of work stations
 - Who & What
- Our Norms
 - Be an active participant
 - Be a focused participant
 - Honor an attention signal

- Welcome!
- Our Goal:
 - Explore the "basics" of work stations
 - Who, What, When, Where, Why, How
- Our Norms
 - Be an active participant
 - Be a focused participant
 - Honor an attention signal

- Let's get started
 - Foldable for Reflections

"Math work stations are areas within the classroom where students work with a partner* and use

to

and

their mathematical thinking." (Diller, 2011) "Math work stations are a time for children to practice problem solving while

and making

among mathematical topics as the teacher observes and interacts with individuals at work or meets with a

for

math instruction." (Diller, 2011)

NCTM Regional Conference (Houston, TX) 11.21.14: Work Stations 101, Grades K-5 Janet Dodd, District Instructional Specialist – Elementary Mathematics, Pasadena ISD (TX) <u>idodd@pasadenaisd.org</u> President, Texas Association of Supervisors of Mathematics

Who?	What?	When?
Where?	Why?	How?
<image/>	<section-header></section-header>	Conferences PISD Mathematics

- WHO and WHAT
 - Sentence Frames
 - So ... what are work stations?
 - So ... who are work stations for?

"Math work stations are a time for children to practice problem solving while <u>reasoning</u>, <u>representing</u>, <u>communicating</u>, and making <u>connections</u> among mathematical topics as the teacher observes and interacts with individuals at work or meets with a <u>small group</u> for <u>differentiated</u> math instruction ." (Diller, 2011)

"Math work stations are areas within the classroom where students work with a partner and use instructional materials to explore and expand their mathematical thinking."

• Reflections: WHO and WHAT

- So ... what are work stations?
- So ... who are work stations for?

- WHAT
 - So ... what instructional materials should be in a work station?

- WHAT
 - Work Stations Sampler

Work Stations 101		
 WHAT Work Stations Sample 	er	Directions are on the activity's task card
Grades K-2		ades 3-5
Solving Story Problems (white)		em Puzzler (pink)
Holt's Hardware Haven (yellow)	•	enting Division (blue)
Tic Tac Toe: Pick 3 (green)		c Toe: Pick 3 purple)

Region 4 ESC materials used with permission from Region 4 ESC.

- Use counters to model each story problem.
 Record a number sentence that represents the story problem.
 Determine the solution to the story problem.

Alma had 7 counters. She gave some counters to her brother. Now she has 3 counters left. How many counters did she give to her brother?	Alma had 8 counters. She had 5 more counters than her brother. How many counters did her brother have?	Alma had some counters. She gave 2 counters to her brother and now she has 6 counters left. How many counters did Alma have at the start?
Alma has 9 counters. 4 of the counters are red and the rest of the counters are yellow. How many yellow counters does Alma have?	Alma had 5 counters. Her brother gave her some more counters. Now she has 10 counters. How many counters did Alma's brother give her?	Alma had some counters. Her brother gave her 4 more counters. Now she has 7 counters. How many counters did she have at the start?

Holt's Hardware Haven Activity Page

At Holt's Hardware Haven, nails are sold in boxes of 24 nails and boxes of 49 nails. If Mrs. Ross purchased 1 box of 24 nails and 1 box of 49 nails, how many nails did Mrs. Ross purchase?

- Cut apart the cards on the Holt's Hardware Haven Activity Master.
- Partner A: Use base ten blocks to solve the problem.
- Partner B: Use the pictures from Holt's Hardware Haven Activity Master to record the sequence of steps your partner used to solve the problem.
- Glue or tape the cards in **My Workspace**. If you need more space, use the back of this paper.

My Workspace

Communicating about Mathematics

How are the parts of the problem represented in your picture model?

© 2011 Region 4 Education Service Center All rights reserved.

Work Stations 101 CAMT 2014 Janet Dodd

Lesson 2 Grade 5	
Name:	Date:
Problem	n Puzzler
 Solve Problem 1 below. Read your Strategy Card. Determine if you Determine which group member's Strategy Problem 1. Record the letter of the card con Repeat this process for Problems 2 – 4. 	Card contains a correct solution process for
Problem 1 A movie theater has 25 rows with 40 seats in each row. If 472 seats are occupied, find the number of empty seats in the movie theater.	Problem 3 At the dollar store, Joyce can purchase 6 soft drinks for \$1. If she plans to drink 2 soft drinks each day, how many days will \$12 worth of soft drinks last?
Card described a correct process.	Card described a correct process.
Problem 2 Look at the pattern of numbers below. 18, 24, 30,, 42	Problem 4 William was playing a card game. Each time he scored 10 points, he added an X to his score card, as shown below.
Determine the missing number in the pattern.	x x x x x x
	William scored 5 additional points after he recorded his last X. How many total points, <i>p</i> , did William score?

Lesson 2 Grade 5

Activity Master: Strategy Cards

Cut along dotted lines.

Strategy Card A	Strategy Card B
Problem 1	Problem 1
Find the sum of 472 and the product of 25 and 40.	Subtract 40 from the product of 25 and 472.
Problem 2	Problem 2
(30 – 24) + 42	(30 – 24) + 30
Problem 3	Problem 3
Multiply 6 by 12 and then divide by 2.	Find the product of 2 and 12 and then divide by 6.
Problem 4	Problem 4
p = 6 + 10 + 5	$p = (6 \times 5) + 10$
Strategy Card C	Strategy Card D
Problem 1	Problem 1
Subtract 472 the product of 25 and 40.	Find the difference of 472 and 40.
Problem 2	Problem 2
30 + 24	(30 + 24) ÷ 2
Problem 3	Problem 3
Find the quotient of 12 and 2.	Add 6 and 12 and then divide by 2.
Problem 4	Problem 4 $p = (6 \times 10) + 5$

Representing Division Activity Page

- Cut apart the cards on the Representing Division Activity Master (Pages 1-2).
- Match the numerical representation of each step of the division process with its corresponding pictorial representation.
- Organize the sets of cards to represent the steps of the division process in sequential order.
- Glue or tape the cards onto a separate piece of paper.

My Workspace

Communicating about Mathematics

How did you determine which numerical and pictorial representations represented the same step of the division process?

Representing Division Activity Master (Page 1)		
$\begin{array}{c} 4 \boxed{1} \\ 537 \\ -4 \\ 1 \end{array}$	$\begin{array}{c c} \underline{13} \\ 4 & 537 \\ \underline{-4} \\ 13 \\ \underline{-12} \\ \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \\ 4 \boxed{537} \\ -4 \\ 13 \end{array}$	
$4 \boxed{\begin{array}{c} \underline{13} \\ 537 \\ \underline{-4} \\ 13 \\ \underline{-12} \\ 01 \end{array}}$		

Representing Division Activity Master (Page 1)

Tic Tac Toe Activity Master

	·····, ····	
1 Draw a picture to represent a fraction that is closer to 1 than it is to zero or $\frac{1}{2}$. Explain your thinking.	2 Write a fraction to describe the part of the hexagon that is shaded. Write a fraction to describe the part of the hexagon that is NOT shaded. What is similar about your fractions? What is different?	3 Write a fraction to describe the part of the set below that is spiders. Which part of the set does the numerator represent? Which part of the set does the denominator represent?
4	5	6
Write words and a fraction to describe the part of the square that is NOT shaded.	Draw a set of objects that shows that $\frac{5}{7}$ is red. Explain your thinking.	Draw a number line. Use the number line to represent a fraction that is between zero and one but is closer to zero than it is to one. Explain your thinking.
7	8	9
Write a fraction to represent the part of the set that are cars.	Which fraction below is closest to $\frac{1}{2}$? $\frac{3}{4}$ or $\frac{3}{8}$ Draw a picture to represent the fraction that you chose. Explain your thinking.	Write a sentence to describe the part of the circle that is shaded. Write a fraction to describe the part of the circle that is shaded.

- WHAT
 - So ... what did the instructional materials in the work stations look like?

• WHAT

- Manipulatives: "When students visualize and then manipulate aspects of mathematical ideas they are exploring, they gain deeper understanding of the CONCEPT." (Ennis and Witeck, 2007 in Sammons, 2010)
- **Problem Solving:** "Students participate in a "climate of inquiry where ideas are generated, expressed, justified, thus creatively exploring mathematical relationships and constructing meaning." (Sammons, 2010)
- Choice: "Choice is an important feature in making work stations successful. Over time, a station should include a variety of things for children to choose from, but there shouldn't be so many choices that the children feel overwhelmed." (Diller, 2011)

athematics

• WHAT

- WHAT
 - So ... what instructional materials should be in a work station?
 - Concepts/Activities:
 - previously explored during class
 - from previous grade level's standards to preview upcoming concepts
 - to support low-performing standards
 - that enrich/extend current standards

- Reflections: WHAT
 - So ... what instructional materials should be in a work station?

Who?	ecialist – Elementary Mathematics, Pasade nt, Texas Association of Supervisors of Mar What?	When?
Where?	Why?	How?
WATH WATS Station WATH		Conferences PISD Mathematics

NCTM Regional Conference (Houston, TX) 11.21.14: Work Stations 101, Grades K-5

- Our Goal:
 - Explore the "basics" of work stations

NCTM Regional Conference (Houston, TX) 11.21.14: Work Stations 101, Grades K-5 Janet Dodd, District Instructional Specialist – Elementary Mathematics, Pasadena ISD (TX) <u>idodd@pasadenaisd.org</u> President, Texas Association of Supervisors of Mathematics

Please return the activities to the baggie! Thank you!