A Sixth Grader Reinvents the

 Pythagorean TheoremAnna Athanasopoulou Michael G. Green

University of North Carolina at Charlotte

CAMMP-MATH Method

At Socrates Academy a K - $\mathbf{8}$ charter school in Charlotte, NC

CAMMP-MATH Method

Comprehensively
Applied
Manipulative
Mathematics
Program
Dr. Michael G. Green \& Dr. Jack A. Piel from UNC-Charlotte developed this method

Four Levels of Instruction

- Concrete
- Representational
- Transitional
- Symbolic

CAMMP-MATH Method

At Socrates Academy
a $6^{\text {th }}$ grader reinvents
the Pythagorean Theorem

Pythagorean Theorem (1)

Students

- cut off squares of $5 \times 5,4 \times 4$, and 3×3 from grid paper
- also cut off squares of 10x10, 8x8, and 6x6 (Concrete-Representational Levels)
- glue the squares onto a piece of paper forming triangles with the three different sides of each set of squares; identify the type of these triangles (Representational - Transitional Levels)

Pythagorean Theorem (2)

Students

- write a mathematical expression to describe the relationship of the areas of squares in both cases (Symbolic Level)
- write a general expression of this relationship (ideally, the Pythagorean Theorem)

Pythagorean Theorem (3)

Mu Aayópzlo Azúpnua

To terpáywvo ins urotévouvag
eival ioo ue to áopowfa twv tetpaywuvav twv súo katéswv

Pythagorean Theorem
The square of hypotenuse is equal to the sum of squares of the
other two perpendicular sides

$$
\begin{aligned}
& a^{2}=b^{2}+y^{2} \text { - to cpiywo ewal } \\
& \text { opgoywino } \\
& \text { the triangle is } \\
& \text { right } \\
& a^{2} \neq b^{2}+\gamma^{2} \text { - } o \text { tpíywvo } \\
& \text { optoy sival } \\
& \text { - the triangle is not } \\
& \text { right }
\end{aligned}
$$

CAMMP-MATH Method

At Socrates Academy a $6^{\text {th }}$ grader applies the Pythagorean Theorem to solve a problem about the formula of the distance of two points in Cartesian coordinate system

Distance between Two Points

Students

- put points $A(-2,4)$ and $B(3,-1)$ on the Cartesian coordinate system (Concrete Representational Levels)
- figure out the distance between these two points by forming a right triangle (Transitional - Symbolic Levels)

Distance between two Points

All three sides of a triangle

Students

- need to calculate the length of each one of the three sides of triangle $A B C$ with vertices at $A(-2,5), B(3,-1)$, and $C(-3,3)$ on the $x-y$ coordinate system (Representational Level)
- form right triangles around the three sides (Transitional Level)
- use the Pythagorean Theorem for each right triangle (Symbolic Level)

All the three Sides of a Triangle

Formula for the Distance between Two Points

Students

- find the general formula for the distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ forming a right triangle and using the Pythagorean Theorem

Formula for the Distance between Two Points

The Student

- Had 6 years experience with CAMMP-based math instruction
- Reflected a deep understanding of Cartesian coordinates
- Spontaneously constructed a specific solution to the problem AND a general scheme for any problem
- The general scheme WAS the Pythagorean Theorem

Thank you for your attention!

... please ask your questions

