

Student loans are a financial commitment that span decades.

Many students take out loans in their late teens and early twenties, unaware of the long-term impact of the loans.

Because of student loan debt

Young adults have decided:

- against pursing graduate school
- delayed getting married
- delayed having children
- to take a job they ordinarily would not have

Fetterman, M. \& Hansen, B. (2006, November 20). Young people struggle to deal with kiss of debt. USA Today.

Student Loans

71% of students take out student loans for their undergraduate degree

A typical student in the class of 2013 graduated with $\$ 32,000$ in student loan debt
http://www.ohe.state.mn.us/mPg.cfm?pageID=1342 http://money.cnn.com/2013/05/17/pf/college/student-debt/ ${ }_{2}$
"After realizing the extent of their debt, 39\% said they would have done things differently."

- started saving earlier
- thoroughly researched financial aid
- looked for ways to save more
- spent less while at school

There is currently a trillion dollars out in student loan debt.

Two Types of Student Loans

Subsidized Loans:

- The government pays interest that accrues until repayment begins
- Must demonstrate financial need
- Must fill out FAFSA form
- There are borrowing limits $(\$ 3,500$ to $\$ 5,500)$

During the first year of the loan

$\mathrm{I}=\mathrm{PRT}$
I: interest accrued (what we want to find)
P: principal $(\$ 7,000)$
R: rate (6.8\%)
T : time (1 year)
(CCSS 7.RP.3)

Hypothetical Student

- Takes out a $\$ 7,000$ loan for the first year of college.
- Payments begin after graduation.
- How much is owed when repayment starts?

Unsubsidized Loans

- The loan is accruing interest while the student is in school.
- Assume it's 6.8% compounded annually.
- Every year the interest is added to the balance of the loan
- This new balance then accrues interest.

During the first year of the loan

I = (7,000)(0.068)(1)
$\mathrm{I}=476$
After the first year, the balance is
$\$ 7,000+\$ 476=\$ 7,476$
Or in one step:
Balance $=\$ 7000(1+0.068)=\$ 7,476$
But there are three more years to go!

During the second year of the loan

What variables have a different value?

I = PRT
I: interest
P: principal
R : rate
T : time
During the second year of the loan
What variable has a different value?

I = PRT
I: interest
P: principal $(\$ 7,476)$
R: rate (6.8\%)
T: time (1 year)

During the second year of the loan

I = PRT
$\mathrm{I}=(\$ 7,476)(0.068)(1)$
$\mathrm{I}=\$ 508.37$
More interest is being charged during the second year. The interest is accruing interest.
Balance is $\$ 7,476+\$ 508.37=\$ 7,984.37$
Or in one step: $(\$ 7476)(1+0.068)=\$ 7,984.37$

	Interest	Balance
		$\$ 7,476$ $=7000(1.068)$
End of Year 1	$\$ 476$	$\$ 7,984.37$ $=7476(1.068)$
End of Year 2	$\$ 508.37$	
End of Year 3		
End of Year 4		

	Interest	Balance
End of Year 1	$\$ 476$	$\$ 7,476$ $=7000(1.068)$
End of Year 2	$\$ 508.37$	$\$ 7,984.37$ $=7476(1.068)$ $=(7000)(1.068)(1.068)$
End of Year 3		
End of Year 4		

	Interest	Balance
End of Year 1	$\$ 476$	$\$ 7,476$ $=7000(1.068)$
End of Year 2	$\$ 508.37$	$\$ 7,984.37$ $=7476(1.068)$ $=(7000)(1.068)(1.068)$ $=(7000)(1.068)^{2}$
End of Year 3		
End of Year 4		

	Interest	Balance
End of Year 1	$\$ 476$	$\$ 7,476$ $=7000(1.068)$
End of Year 2	$\$ 508.37$	$\$ 7,984.37$ $=7476(1.068)$ $=(7000)(1.068)(1.068)$ $=(7000)(1.068)^{2}$
End of Year 3		$=(7000)(1.068)^{3}$
End of Year 4		$=(7000)(1.068)^{4}$

	Interest	Balance
End of Year 1	$\$ 476$	$\$ 7,476$ $=7000(1.068)$
End of Year 2	$\$ 508.37$	$\$ 7,984.37$ $=7476(1.068)$ $=(7000)(1.068)(1.068)$ $=(7000)(1.068)^{2}$
		$\$ 8,527.31$ $=(7000)(1.068)^{3}$
End of Year 3	$\$ 542.94$	
End of Year 4	$\$ 579.86$	$\$ 9,107.16$ $=(7000)(1.068)^{4}$

Compound interest

$F V=P V(1+i)^{n}$
FV: Future Value
PV: Present Value $(\$ 7,000)$
i: interest rate per time period (0.068)
n : number of time periods (4)
$F V=7000(1+0.068)^{4}$
$F V=\$ 9,107.16$

Geometric Sequence:

Each term in the sequence is obtained by multiplying the preceding term by a constant (a common ratio).

Common ratio is 1.068
Sequence:
7000, 7000(1.068), 7000(1.068) ${ }^{2}$, $7000(1.068)^{3,}, 7000(1.068)^{4}$
(CCSS F.IF. 1, 2, 3)

Hypothetical Student's Loan

Loan amount student took out: \$7,000

Grace Period

- Payments do not start until six months after graduation.
Amount due four years later: \$9,107.16

Wait! There's more!

Grace Period

- Payments do not start until six months after graduation.
- But interest is accruing during this time!
- Tack on another half a year to that compound interest calculation.

$$
F V=7000(1+0.068)^{4.5}=\$ 9411.71
$$

Hypothetical Student's Loans

Loan amount student took out: \$28,000 Amount due when repayment begins: $\mathbf{\$ 3 4 , 2 0 1 . 5 5}$
$(\$ 9,411.71+\$ 8,812.47+\$ 8,251.37+\$ 7,726)$

Now Repayment Begins

The student will make 180 payments $(12$ payments/year)(15 years) $=180$

The amount due is $\$ 34,201.55$

Why isn't the monthly payment determined this way: $\$ 34,201.55 / 180$

College is Four Years

Assume a \$7,000 loan taken out every year
Year 1: $F V=7000(1+0.068)^{4.5}=\$ 9,411.71$
Year 2: $F V=7000(1+0.068)^{3.5}=\$ 8,812.47$
Year 3: $F V=7000(1+0.068)^{2.5}=\mathbf{\$ 8 , 2 5 1 . 3 7}$
Year 4: FV $=7000(1+0.068)^{1.5}=\$ 7,726.00$

Now Repayment Begins

- Hypothetical Student will pay a set amount every month for 15 years.
- This is a "present value annuity": money was provided up front and is paid back in equal payments made at regular time intervals.
- How much will the student pay every month?

Interest is Accruing

- The loan is accruing interest during repayment
- During repayment assume interest is 6.8\% compounded monthly.

\qquad

Present Value Annuity
$P V=P M T a_{n \mid i}$
34,201.55 = PMT(112.6527114)
303.60 = PMT

So Hypothetical Student will pay \$303.60 a month for fifteen years.

How Much Interest Will be Paid?
Loan amount student took out: \$28,000

How much will the student pay in interest?

How Much Interest Will be Paid?

Loan amount student took out: \$28,000

Total amount student will repay:
$(\$ 303.60)(12)(15)=54,648$

Student will repay $\mathbf{\$ 5 4 , 6 4 8}$.
Student will pay $\mathbf{\$ 2 6 , 6 4 8}$ in interest on her \$28,000 loan

How Much Interest Will be Paid?

Loan amount student took out: \$28,000

Total amount student will repay:
$(\$ 303.60)(12)(15)=54,648$

Student will repay $\mathbf{\$ 5 4 , 6 4 8}$.

Where Do Monthly Payments Go?

- The student is writing a check every month for \$303.60.
- What is happening to that money?
- Amortization table

Amortization table				
Payment number	Payment amount	Interest amount	Principal amount	Remaining balance
1	$\$ 303.60$			
2	$\$ 303.60$			
\cdots	\cdots			
180	$\$ 303.60$			

Where Do Monthly Payments Go?

- Interest is paid off as it accumulates
- It isn't being carried month to month
- Interest for the first month is

$$
\begin{aligned}
& I=P R T \\
& I=(34201.55)(0.068)(1 / 12)
\end{aligned}
$$

$$
\mathrm{I}=\$ 193.81
$$

- The rest of the $\$ 303.60$ payment goes towards principal

Amortization table					
	Payment amount	Interest amount	Principal amount	Remaining balance	
$\mathbf{1}$	$\$ 303.60$	$\$ 193.81$	$\$ 109.79$ $303.60-193.81$	$\$ 34,091.76$ $34201.55-109.79$	
$\mathbf{2}$	$\$ 303.60$				

Amortization table				
	$\begin{array}{l}\text { Payment } \\ \text { amount }\end{array}$	$\begin{array}{l}\text { Interest } \\ \text { amount }\end{array}$	$\begin{array}{l}\text { Principal } \\ \text { amount }\end{array}$	

balance\end{array}\right] \left.\)| $\mathbf{1}$ | $\$ 303.60$ | $\$ 193.81$ | $\$ 109.79$
 $303.60-193.81$ |
| :--- | :--- | :--- | :--- | | $\$ 34,091.76$ |
| :--- |
| $34201.55-109.79$ | \right\rvert\,

Amortization table

The payment is the same each time, but:

- amount going toward interest decreases
- amount going toward principal increases

Feel like doing all 180 rows by hand?
This is where a spreadsheet is handy!

Amortization Table

What if Hypothetical Student paid an extra $\$ 100$ a month?

What if Hypothetical Student paid					
an extra \$100 a month?					
Making the regular montly payment			Making extra $\$ 100$ extra towards principal every month		
Payment number	Remaining Balance		Payment Remaining Number Balance		
1 s	\$ 34,091.76		1 \$ 33,991.76		
2 s	\$ 33,981.35		2 \$ 33,780.78		
66	\$ 25.444.02		66 \$ 17,467.49		
67 \$	\$ 25,284.60		67 \$ 17.162.87	50\% paid off	
68 §	\$ 25,124.28		68 § 16,856.52		
89 \$	§ 21,539.54		89 § 10,006.74		
905	\$ 21,359.00	Halfway mark with payments	90 ¢ 9,659.84	Paid off 72% of loan	
	\$ 21,175.43	Paid off 37% of loan	91 § 9,310.98		
112 s	\$ 17,093.17	50\% paid off	112 § 1,510.52		
113 S	\$ 16,886.43		113 § 1.115 .48		
114	\$ 16,678.52		114 § 718.20		
115	\$ 16,469.43		115 § 318.67		
116	\$ 16,259.16		116 § (83.13)		
117 §	\$ 16,047.69		paid off		
179 \$	\$ 302.40				
180 \$	\$ 0.52				
					45

What if Hypothetical Student paid an extra $\$ 100$ a month?

- Pay off the loan in 9 years 8 months
- Shaved more than 5 years off the payments
- "Only" repay $\$ 46,734.47$ rather than $\$ 54,648$
- Save $\$ 7,913.53$ in interest
- Write "apply extra to principal" on check

Thank you!

Questions?
Alice Seneres
seneres@rci.rutgers.edu

Tips for a great conference!
Rate this presentation on the conference app
www.nctm.org/confapp
Download available presentation handouts from the Online Planner! www.nctm.org/planner

Join the conversation! Tweet us using the hashtag \#NCTMRichmond

Links

www.usnews.com/education/best-colleges/the-short-list-college/articles/2012/12/14/10-colleges-where-graduates-have-the-most-debt
money.cnn.com/interactive/pf/college/studen t-debt-map/?iid=EL
www.citizensbank.com/student-loans/federal-direct.aspx

Deriving the present value annuity formula

Future value annuity

- Let's put the student's loan aside
- I deposit $\$ 1$ at the end of each year for four years into an account that earns 5\% interest compounded annually.
- This is a "future value" annuity.
- How many years would the first dollar be accruing interest?

What are the mathematical expressions for the other deposits?

Deposit from Year	Deposit amount	Years earning interest	Future value
$\mathbf{1}$	$\$ 1$	3 (deposit at end of year)	$\$ 1.16$ $=1(1.05)^{3}$
$\mathbf{2}$	$\$ 1$	2	$\$ 1.10$ $=1(1.05)^{2}$
$\mathbf{3}$	$\$ 1$	1	$\$ 1.05$ $=1(1.05)^{1}$
$\mathbf{4}$	$\$ 1$	0	$\$ 1$

How do we find total? Add the future values. ${ }_{54}$

Future Value Annuity

$\mathrm{FV}=(1)(1.05)^{3}+(1)(1.05)^{2}+(1)(1.05)^{1}+1$
$F V=1.16+1.10+1.05+1$
$\$ 4.31$ is what we have saved after four years.

Future value annuity

The previous specific situation for how $\$ 1$ behaved: $F V=(1)(1.05)^{3}+(1)(1.05)^{2}+(1)(1.05)^{1}+1$

A flexible formula for how $\$ 1$ behaves:
$s_{n \mid i}=(1)(1+i)^{n-1}+(1)(1+i)^{n-2}+\ldots+(1)(1+i)^{2}+(1)(1+i)+1$

- $\mathrm{s}_{\mathrm{n} \mid \mathrm{i}}$ is the future value annuity factor
- i is interest rate, n is number of payments
- Need it in a more compact form

Original equation:

$s_{n \mid i}=(1)(1+i)^{n-1}+(1)(1+i)^{n-2}+\ldots+(1)(1+i)^{2}+(1)(1+i)+1$
Multiply both sides by $(1+i)$:
$(1+i) s_{n \mid i}=(1)(1+i)^{n}+(1)(1+i)^{n-1}+\ldots+(1)(1+i)^{2}+(1)(1+i)+1$
Now subtract original equation

$$
\begin{aligned}
& (1+i) s_{n \mid i}(1)(1+i)^{n}+(1)(1+i)^{n-1}+\ldots+(1)(1+i)^{2}+(1)(1+i) \\
& -s_{n \mid i} \quad=-(1)(1+i)^{n-1}-(1)(1+i)^{n-2}-\ldots-(1)(1+i)^{2}-(1)(1+i)-1 \\
& i s_{n \mid i}=(1+i)^{n}-1 \\
& s_{n \mid i}=\frac{(1+i)^{n}-1}{i}
\end{aligned}
$$

Future Value Annuity

- Won't always be investing for 4 years
- Won't always be investing at 5% interest.
- We need a flexible formula.

Original equation:
$s_{n \mid i}=(1)(1+i)^{n-1}+(1)(1+i)^{n-2}+\ldots+(1)(1+i)^{2}+(1)(1+i)+1$
Multiply both sides by $(1+i)$:
$(1+i) s_{n \mid i}=(1)(1+i)^{n}+(1)(1+i)^{n-1}+\ldots+(1)(1+i)^{2}+(1)(1+i)$
Now subtract original equation
$(1+i) s_{n \mid i}=(1)(1+i)^{n}+(1)(1+i)^{n-1}+\ldots+(1)(1+i)^{2}+(1)(1+i)$
$-\mathrm{s}_{\mathrm{n} \mid} \quad=-(1)(1+\mathrm{i})^{n-1}-(1)(1+\mathrm{i})^{n-2}-\ldots-(1)(1+\mathrm{i})^{2}-(1)(1+\mathrm{i})-1$

Future value annuity

$$
\mathrm{FV}=\mathrm{PMT} \mathrm{~s}_{\mathrm{n\mid i}}
$$

FV: Future Value (the amount of money saved at the end of the annuity)
PMT: The amount of each payment
$\mathrm{s}_{\mathrm{n} \mid \text { i }}$ Future value annuity factor

Present Value Annuity

- But Hypothetical Student has the opposite situation.
- The student borrowed a certain amount of money that needs to be paid off.
- This is a present value annuity
- How can we calculate the student's monthly payment?

Calculating Monthly Payments

- How much student will owe in 15 years?
- Compound interest problem
- Calculate FV

$$
F V=P V(1+i)^{n}
$$

Calculating Monthly Payments

$\mathrm{FV}=P M T s_{n \mid i}$
FV: Future value, amount needed to pay off loan
PMT: Monthly payment (need to find)
$\mathrm{s}_{\mathrm{n} \mid \text { i }}$: future value annuity factor (can calculate)

Calculating Monthly Payments

We know:
$\mathrm{FV}=P M T s_{\mathrm{n} \mid \mathrm{i}}$
$F V=P V(1+i)^{n}$
Let's set them equal to each other:
$P V(1+i)^{n}=P M T s_{n \mid i}$
Present Value Annuity

$$
\begin{aligned}
& P V(1+i)^{n}=P M T s_{n \mid i} \\
& P V=\frac{P M T s_{n \mid i}}{(1+i)^{n}} \\
& P V=P M T\left(\frac{s_{n \mid i}}{(1+i)^{n}}\right) \text { where } a_{n \mid i}=\frac{s_{n i i}}{(1+i)^{n}} \\
& P V=P M T a_{n \mid i}
\end{aligned}
$$

Present Value Annuity

$P V=P M T a_{n \mid i}$

PV: Present Value (the balance of the loan when repayment begins) $\$ 34,201.55$
PMT: The amount of each payment
$\mathrm{a}_{\mathrm{n} \mid \mathrm{i}}$: The present value annuity factor

Now we can calculate the monthly payment!

Present Value Annuity

First calculate $\mathrm{s}_{\mathrm{n} \mid \mathrm{i}} \quad$ Then calculate $\mathrm{a}_{\mathrm{n} \mid \mathrm{i}}$
$s_{n i}=\frac{(1+i)^{n}-1}{i}$
$s_{180 \frac{0.068}{12}}=\frac{\left(1+\frac{0.068}{12}\right)^{180}-1}{\frac{0.068}{12}}$
$s_{180 \frac{0.068}{12}}=311.5097406$
$a_{n i i}=\frac{s_{n i i}}{(1+i)^{n}}$
$a_{180 \frac{.068}{12}}=\frac{311.5097406}{\left(1+\frac{0.068}{12}\right)^{180}}$
$a_{180 \frac{0.068}{12}}=112.6527114$

Present Value Annuity

$\mathrm{PV}=\mathrm{PMTa} \mathrm{a}_{\mathrm{n} \mid}$
34,201.55 $=$ PMT(112.6527114)
$303.60=$ PMT

So Hypothetical Student will pay $\$ 303.60$ a month for fifteen years.

