THE MATHEMATICS mentorship Project

Developing Mathematical
Writing
Matthew Reames
University of Virginia \| mr7c@virginia.edu

Topics for today

About the project

- Background
- Details
" Problem and Sample Solutions
Why writing?
Development of a framework for math writing
What students said about the project

Summer 2012...

"Mathematics of Geodesic Domes" Course at the UVA Summer Enrichment Program (SEP)

-A program of the University of Virginia Curry School of Education
-Started in 1977
-Serves "gifted/high ability students" entering grades 5-11
-12-day residential program

- Academic and social components

"I like math...
 I just don't like school math."

"I have math questions my teachers don't have time to answer."

"If school offers a math enrichment program, the person running it needs to know about math."

My question...

How can we offer
 ongoing math enrichment throughout the year?

Mathematics Mentoring Project

Students would receive a monthly open-ended math problem and...
" have 2 to 3 weeks to work on it;
" solve it however they felt was best for that problem; and
" submit and receive written feedback.

Could be done by email or regular mail

Mathematics Mentoring Project

A pilot project for the 2012-2013 school year

- Students who had expressed an interest in math enrichment
- Invited 15 students, most from my summer class
- Students $5^{\text {th }}$ and $6^{\text {th }}$ grade age (two were moved into $7^{\text {th }}$ grade)
- 2 girls, 13 boys

Continued in the 2013-2014 school year

- 80 students invited (40 girls, 40 boys)
- 27 students accepted (12 girls, 15 boys)

To sum things up so far...

Let's give kids interesting math problems to solve, and give them feedback and encouragement.

Mathematics
Mentoring
Project

Problem Set 1
The problem
Eric the Sheep is in line to be shorn. He is last in line. Each time the sheep shearer takes one sheep from the front of the line, Eric sneaks past two sheep to get closer to the front. there are 50 sheep in front of Eric to start with, how many sheep will be shorn before Eric
gets to the front?

What happens if there are a different number of sheep in front of Eric?
Questions to think about

- How do you know?
- Can you prove it?

Does it always work this way?

Extending the problem-Some other things voumight investigate

Patterns and Relationships
Mathematicians are interested in patterns and relationships. Doyou notice any relationship between the number of sheep in front of Eric and the number of sheep shorn before Eric gets to the front? What are some other patterns or relationships you notice?
What happens if...?
Mathematicians are also interested in the question. "What happens if..." Now, tyy to take to problem further. You might want to investigate what happens if Eric sneaks past 3 sheep,
or 4 sheep, or more. You might want to investigate what happens if there are 2 shearers, 3 shearers, or more. You might have a different idea about someching to change in the problem and see what happens
(Note: Problem taken from http://www.blackdouglas.comauu/taskcentre/045eric.htm)

Problem 1...

Eric the Sheep is in line to be shorn. He is last in line. Each time the sheep shearer takes one sheep from the front of the line, Eric sneaks past two sheep to get closer to the front. If there are 50 sheep in front of Eric to start with, how many sheep will be shorn before Eric gets to the front?

What happens if there are a different number of sheep in front of Eric?
Questions to think about

- How do you know?
- Can you prove it?
- Does it always work this way?

Problem 1...

Extending the problem - Some other things you might investigate

Patterns and Relationships

Mathematicians are interested in patterns and relationships. Do you notice any relationship between the number of sheep in front of Eric and the number of sheep shorn before Eric gets to the front? What are some other patterns or relationships you notice?

What happens if...?
Mathematicians are also interested in the question, "What happens if...?" Now, try to take to problem further. You might want to investigate what happens if Eric sneaks past 3 sheep, or 4 sheep, or more. You might want to investigate what happens if there are 2 shearers, or 3 shearers, or more. You might have a different idea about something to change in the problem and see what happens!

Example 1

How many sheep? 17 Sheep
What happens with more? You divide by 3
How do you know? I tried it by drawing it out

Can you prove it? Tried it with multiple numbers

Does it always work like this? Unless it's not divided by 3

A pretty average problem but I had a hard time explaining my work.

I like problems with variables in them. I also like order of operations.

Example 2

Example 3

Ail7 sheep	wait for the last
W: I made a line	Sheep infront of
of 50 macks i crosse	him in order to
out while skipping	be sheared in the
	"Sklp 2" paftern.
W $\times 4 \times \pm \times 4$	
	What if there are 40
11911	Sheep infront of Erik
141711	she skips 3 each
गाT1111	time osheep is
A: I notice that Erits	sherred?
-skips 2 (even No) sheap	
\& there an 50 (even No.)	Hxxxax+4athln
sheep ahead If the TIIIIIITMIIII	
No ahead was add Eriks Strahesy	
woulo have failed ह he would	In this pat case
have no chosice lat to wait or	he will be able
Skip a different amount to stip 3 each	
A: What I noticed was that	time a sheep is
if that there are 50 mee	Sheared till the
theep and with Erik skipping last 2 sheeps	
12 sheep by the time he gets	are lyft 50
to the fron the No of shen the will haveto	
Sheused before s after him tre wionit to of	
	his pantere
A : What if there are	
13 sheep in front of Erik?	
he skips 2?	
In this case Erik must	
MATTHEW	

Example 4

I started of with the question by finding a way to answer it. I tried to use the fact the 50 sheep are in front of Eric. I did the number of sheep in front of him (50) than subtract the one sheep that had gotten shorn. Then I subtracted the two sheep that he skipped. I labeled that as turn 1 . I repeated this as turn two. I continued doing this until I got to 0 , turn 17. Next, I tried to find a pattern. I used 17 as my answer. I made myself a chart of questions and answered them.
\# of sheep in front Total sheep \# of sheep shorn \# of moves up total answer

50	51	1	$+$	2	$=$	3	17	51 divided by $3=17$
99	100	1	+	3	$=$	4	25	100 divided by $4=25$
125	126	2	+	4	$=$	6	21	126 divided by $6=21$
95	96	1	$+$	3	$=$	4	24	96 divided by $4=24$
1,232	1,233	3	$+$	6	$=$	9	137	1,233 divided by $9=137$

I realized a new pattern. Sheep sheared (1) + \# of moves up (2) = total (3). Then you divide total sheep (51) by total (3) to get your answer (17).

Example 5

The answer that I got for the base problem was 17. I got this answer by making a visual model with Eric, a shearer and 50 dots representing sheep between Eric and the shearer. I crossed out three dots each time meaning either that Eric had passed them or that they had been sheared, and then made a tally mark. I did this repeatedly until all the sheep and Eric had been crossed out, and then added up my tallies. To check myself, I then did $51 / 3$, which was my answer. I also figured out that each time the number of sheep in front of Eric increases by 1 the number of sheep that have to be shorn increases by $1 / 3$, meaning that if the number of sheep in front of Eric increases by 3 , the number of sheep that have to be shorn before he is shorn increases by 1 .

Example 6 - part 1

 ANSWER: 17I got this answer with a very simple table. All I did was put the number of sheep shorn in the x column, and then the number of sheep left in front of Eric (after he sneaks in front of two.) So in the X column, I put numbers starting with 1, and counting up. In the Y column, I put numbers starting with 50 (across from the zero) and counted down by threes.
That was the easy part.

\mathbf{X}	\mathbf{Y}
0	50
1	47
2	44
3	41
4	38
5	35
6	32
7	29
8	26
9	23
10	20
11	17
12	14
13	11
14	8
15	5
16	2
17	-1

Example 6 - part 2

Now, I had to try to come up with an equation that connected the numbers across. I thought about it for a while and I eventually turned the Y column upside-down, and then multiplied the X column by three and subtracted one.

\mathbf{Y}	\mathbf{X}	\mathbf{X} * 3-1
-1	0	-1
2	1	2
5	2	5
8	3	8
11	4	11
14	5	14
17	6	17
20	7	20
23	8	23
26	9	26
29	10	29
32	11	32
35	12	35
38	13	38
41	14	41
44	15	44
47	16	47
50	17	50

Example 6 - part 3

This led to another equation, The equation is: $\mathrm{W} /(\mathrm{X}+\mathrm{Y})=\mathrm{Z}$
$\mathrm{W}=$ the total number of sheep in line (including Eric) $(50+1)$
$X=$ the number of sheep that are shorn before he cuts in front of $Y(1)$
$Y=$ the number of sheep Eric cuts in front of when X number of sheep is shorn (2)

Z = answer
I got stuck coming up with this equation. I took a 15 -minute break and then it just came to me. I can use this equation if any of the W, X, or Y variables change, and I tested it to make sure.

Feedback

Dear \qquad ,

Thanks for sending in your solution to the first problem. I like how you described the way you solved the initial problem. I do have a question, though. You said that you would circle one sheep and then erase three - when I followed your instructions, I only got 13. Did you mean that you erased two sheep instead of three?

I like the idea of calculating how long Eric stayed in the line, plus the idea that alternate sheep took 10 minutes. I think both 1 hour 25 minutes and 2 hours 5 minutes are both a lot of waiting!

I was also pleased to see that you tried asking, "What if...?" with 3 people shearing and Eric jumping 2 sheep. Your explanation of the method you used to solve the problem was easy for me to follow.

Something to think about for future problems is how you might describe the situation using algebra. For example, could you use variables to figure out an equation for the number of sheep shorn before Eric?

I hope school is off to a great start!

Problem 2 is almost ready!
Matthew Reames

Addition of a Mega Problem

I recently read online that the Fibonacci series can be used to approximate conversions between miles and kilometers.

Is this statement correct?

Questions to think about

- Is the statement correct? Is it always correct or only sometimes?
- How do you know?

Photo by matthew_reames on flickr.

- Can you prove it?
- Can you use this for numbers that are not in the Fibonacci series?

Why Focus on Writing?

The questions to think about:

Why is mathematical writing important?

What does mathematical writing look like?

How is it different from other types of writing?

NCTM Process Standards

Communication: Instructional programs from pre-kindergarten through grade 12 should enable all students to:

Organize and consolidate their mathematical thinking through communication;

Communicate their mathematical thinking coherently and clearly to peers, teachers, and others;

Analyze and evaluate the mathematical thinking and strategies of others; and

Use the language of mathematics to express mathematical ideas precisely.

Common Core Math Curriculum

Standard 3: Construct viable arguments and critique the reasoning of others

...They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose.

Why is mathematical writing important?

One goal of written mathematical communication is to help students explain their thinking and consider how and why they solve problems as they do. (Haltiwanger \& Simpson, 2013)

Another goal is for students to reflect on their own learning, or to explore additional mathematical ideas. (Burns, 2004)

More crucial, however, is that the way mathematical language is used helps to determine how children see themselves mathematically:
'The language used in mathematical practices, both in and out of school, shapes the ways of being a mathematician and the conceptions of the nature of mathematical knowledge and learning that are possible within those practices.' (Burton \& Morgan, 2000, p. 429)

What does mathematical writing look like?

Initial Framework:
 Components of Mathematical Communication

Communication About Mathematics	Communication In Mathematics	Communication With Mathematics
Reflection on cognitive processes: Descriptions of procedures, reasoning. Metacognition - giving reasons for procedural decisions.	Mathematical register: Special vocabulary. Particular definitions of everyday vocabulary. Modified uses of everyday vocabulary. Syntax, phrasing. Discourse.	Problem-solving tool: Investigations. Basis for meaningful action.
Communication with others about cognition: Giving point of view. Reconciling differences.	Representations: Symbolic. Verbal. Physical manipulatives. Diagrams, graphs. Geometric.	Alternative solutions: Interpretation of arguments using mathematics. Utilisation of mathematical problem- solving in conjunction with other forms of analysis.

What actually happened

Mismatch between the original framework and the data.

Eventually became an inductive approach (Bazeley, 2013).

Began to develop a framework grounded in the data.

What do children do when they write about their math solutions?

A lot of things \&

A range of things

...to solve this problem...
...now I...

Clarify / Restate the problem (or part of the problem)

About the problem, next time.

Modify the problem

Extend to other contexts

Generalizations

Implications for Teaching

How teachers help children develop their math writing

How math is taught in schools

Differentiation in math

Next steps:
 Quality of Mathematical Writing

Mathematical Knowledge

" Understanding of the problem's mathematical concepts and principles

- Use of appropriate mathematical terminology
- Computations are correct

Strategic Knowledge

- Use of relevant information
- Identifies the important parts of the problem and understands the relationships between them
" Use of appropriate strategy to solve the problem
" Shows clear solution process
" Solution process is complete and systematic

Communication

- Clear and effective explanation of the solution process
- May include appropriate diagram, chart, table, equation, etc.
- Strong and logical supporting arguments
- May include examples or counterexamples

What students said...

- "I liked thinking about problems differently to solve them. I also liked the different types of questions."
- "I really liked the project and I thought that the problems were challenging and made us look at math at a new perspective. I would like to do this again."
- "All of it (feedback) was very useful, and I liked how Mr. Reames explained it in a way I could understand. I think it would be even better if Mr. Reames would use diagrams in his feedback."
- "I used the feedback on how to think of the problems differently, using more questions and answers, and seeing whether my questions were accurate."

What students said...

- "I thought that the feedback was always helpful, but I liked it when you told us a good thing that we did and then a bad thing that we did."
- "...the only problem was that if the Internet went down or wasn' \dagger working, then it might take a while to communicate."
- "...the problems were very different and they needed a different perspective to look at them."
- "I liked making up possible equations and questions. I also liked how I couldn't really be right or wrong and I wouldn't be getting a grade."

What students said...

- "I would because I like how I can try anything and I learn a lot about different ways to think."
- "It was more difficult and interesting(than the math I do in school)."
- "I liked that it was like another math class, except that it was not for a grade."
- "I want to do it again next year!"

Things to think about

It's not the same as being in a classroom.
Lack of immediate communication or discussion.
Tailoring problems to specific students is more difficult.
It can be difficult to sustain participation.
Email can influence the types of (or presentations of) solutions
Can rely heavily on parents.
Requires someone willing and able to provide feedback.
It's flexible - students can participate as they are able.
It is location independent.

THE MATHEMATICS MENTORSHIP PROJECT

Developing Mathematical Writing

Matthew Reames
University of Virginia | mr7c@virginia.edu

