Relating Hypothesis Tests,
 Confidence Intervals, Means, and Standard Deviations

By Lance Revennaugh

Frostburg State University lrevennaugh@frostburg.edu

One Sample t-tests

The mean for each sample is the same but notice how the standard deviation of each affects the outcome of the one-sample t-test.

$$
\begin{aligned}
& H_{0}: \mu=60 \\
& H_{A}: \mu \neq 60 \\
& \alpha=.05
\end{aligned}
$$

a) $62,64,65,66,68$

$$
\begin{aligned}
& \bar{x}=65 \\
& s=2.24 \\
& t=5.00 \\
& p=.0075
\end{aligned}
$$

95\% confidence interval (62.22, 67.78)
Reject H_{0}
b) $60,63,65,67,70$

$$
\begin{aligned}
& \bar{x}=65 \\
& s=3.81 \\
& t=2.94 \\
& p=.0426
\end{aligned}
$$

95% confidence interval $(60.27,69.73)$
Reject H_{0}
c) $60,60,65,70,70$

$$
\begin{aligned}
& \bar{x}=65 \\
& s=5.00 \\
& t=2.24 \\
& p=.0890
\end{aligned}
$$

95% confidence interval $(58.79,71.21)$
Cannot Reject H_{0}
What do you notice about the confidence intervals and the hypothesis tests?

Two Sample t-tests

Notice how the standard deviations of each sample affect the outcome of the two-sample tests.

$$
\begin{aligned}
& H_{O}: \mu_{1}=\mu_{2} \\
& H_{A}: \mu_{1} \neq \mu_{2} \\
& \alpha=.05
\end{aligned}
$$

a) Sample one: 73, 74, 75, 76, 77
$\bar{x}_{1}=75$
$s_{1}=1.58$
95\% CI (73.04, 76.96)
sample two: 63, 64, 65, 66, 67

$$
\begin{aligned}
& \bar{x}_{2}=65 \\
& s_{2}=1.58 \\
& 95 \% \mathrm{CI}(63.04,66.96)
\end{aligned}
$$

one:

two

$t=10$
$p=.0000$
Reject H_{o}
95\% CI for $\mu_{1}-\mu_{2}(7.69,12.31)$
b) Sample one: $65,70,75,80,85$
sample two: $55,60,65,70,75$
$\bar{x}_{1}=75$
$s_{1}=7.91$

$$
\bar{x}_{2}=65
$$

$$
s_{2}=7.91
$$

$$
95 \% \mathrm{CI}(65.18,84.82)
$$

$$
95 \% \text { CI }(55.18,74.82)
$$

one:

two:

$t=2$
$p=.0805$

Cannot Reject H_{o}
95% CI for $\mu_{1}-\mu_{2}(-1.53,21.53)$
What do you notice about the confidence intervals and the decisions?

ANOVA'S

For these one-way ANOVA's, notice how the standard deviation of each sample changes the outcome of the F-test

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{A}: \text { at least one } \neq \\
& \alpha=.05
\end{aligned}
$$

a) Sample one:

73, 74, 75, 76, 77
$\bar{x}_{1}=75$
$s_{1}=1.58$
95\% CI (73.04, 76.96)

Sample two:
63, 64, 65, 66, 67
$\bar{x}_{2}=65$
$s_{2}=1.58$
95% CI (63.04, 66.96)

Sample three:
53, 54, 55, 56, 57
$\bar{x}_{3}=55$
$s_{3}=1.58$
95\% CI (53.04, 56.96)
one:

two:

three:

Source	df	SS	MS	F
Between	2	1000	500	$200(.0000)$
Within	12	30	2.5	
Total	14	1030		

Reject H_{o}

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{A}: \text { at least one } \neq \\
& \alpha=.05
\end{aligned}
$$

b) Sample one:
$65,70,75,80,85$
$\bar{x}_{1}=75$
$s_{1}=7.91$
95% CI $(65.18,84.82)$

Sample two:
55, 60, 65, 70, 75
$\bar{x}_{2}=65$
$s_{2}=7.91$
$95 \% \mathrm{CI}(55.18,74.82)$

Sample three:
45, 50, 55, 60, 65
$\bar{x}_{3}=55$
$s_{3}=7.91$
$95 \% \mathrm{CI}(45.18,64.82)$
one

two

three

Source	df	SS	MS	F
Between	2	1000	500	$8(.0062)$
Within	12	750	62.5	
Total	14	1750		

Reject H_{o}

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{A}: \text { at least one } \neq \\
& \alpha=.05
\end{aligned}
$$

c) Sample one:
$55,65,75,85,95$
$\bar{x}_{1}=75$
$s_{1}=15.81$
95\% CI (55.37, 94.63)

Sample two:
$45,55,65,75,85$
$\bar{x}_{2}=65$
$s_{2}=15.81$
95\% CI (45.37, 84.63)

Sample three:
$35,45,55,65,75$
$\bar{x}_{3}=55$
$s_{3}=15.81$
95% CI (35.37, 74.63)
one

two
three

Source	df	SS	MS	F
Between	2	1000	500	$2(.1780)$
Within	12	3000	250	
Total	14	4000		

Cannot Reject H_{o}

Notice that the sums of squares (SS) is the same for the Between source. Why? This next example changes the Between SS, but the F-value is the same as example b. Why?

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{A}: \text { at least one } \neq \\
& \alpha=.05
\end{aligned}
$$

d) Sample one:
$65,75,85,95,105$
$\bar{x}_{1}=85$
$s_{1}=15.81$
95\% CI (65.37, 104.63)

Sample two:
$45,55,65,75,85$
$\bar{x}_{2}=65$
$s_{2}=15.81$
95\% CI (45.37, 84.63)

Sample three:
25, 35, 45, 55, 65
$\bar{x}_{3}=45$
$s_{3}=15.81$
95% CI (25.37, 64.63)
one

two
three

Source	df	SS	MS	F
Between	2	4000	2000	$8(.0062)$
Within	12	3000	250	
Total	14	7000		

Reject H_{o}

SSB is a measure of "variance" between the means of the three samples and SSN is a measure of variance within each sample.

Source	df	SS	MS	F
Between	$\mathrm{k}-1$	SSB	$M S B=\frac{S S B}{k-1}$	$\frac{M S B}{M S W}$
Within	$\mathrm{n}-\mathrm{k}$	SSW	$M S W=\frac{S S W}{n-k}$	
Total	$\mathrm{n}-1$	SSTo		

$$
\begin{aligned}
& \mathrm{SS}=\text { sum of squares } \\
& \mathrm{MS}=\text { mean square } \\
& \mathrm{k}=\text { number of groups } \\
& \mathrm{n}=\text { total sample size }
\end{aligned}
$$

MORE

Sam Statistic is in a class that has 5 chapter exams and a final exam. The final exam counts twice as much as a chapter exam. If Sam scores $90,84,76,82$, and 77 on the chapter tests, what should his grade be on the final exam to get an average of 83 for the class?

Find 4 numbers whose mean is 50 and whose median is 60 .

Find mean, median, and mode for

Which has a larger standard deviation (scales are the same)?

Find five numbers whose mean is 50 standard deviation is zero.
Use $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Find five numbers whose mean is 50 and whose standard deviation is 10 .

