Multisensory Algebra: Building Solutions, Proof by Construction

The NCTM 2014 Regional Meeting and Exposition Richmond, VA

Marilyn Zecher, M.A., CALT
Instructor, Math Specialist

Multisensory Training Institute of ASDEC
Rockville, MD
www.asdec.org
\square

For Many Students Algebra is a Set of Concepts \& Procedures that Don't Add Up

- Algebra can be:
- Very Abstract
- Only a set of procedures
- Not relevant in the student's experience
- Buttons pushed in a specific sequence- all with no meaning attached
"SOMETMES IT DOES, SOMETMES IT DEESN'T."

Preview:

- What
- Multisensory
- CRA
- Why
- Rationale
- How
- Practical use of manipulatives in algebra
- Do-Practical Practice

Page 3

Research Suggests

- The core deficit in mathematics difficulties is numeracy
- Employing the visuospatial sense
- This deficit exists at all levels of math instruction
- Define numeracy...
- Automatic recognition of quantity and quantity relationships
- How does this impact algebra?
- What can we do?

Multisensory Math

- Why

- Learning occurs in many parts of the brain
- But memory is highly associative
- All students benefit from hands-on instruction
- For those students with learning differences, it can provide an essential link

Why: Multisensory

- Information

- can be processed on a modality-specific basis [visual, auditory, kinesthetic etc.]
- converges and is integrated in the brain
- Performance enhancement
- is larger for multisensory than unisensory stimuli

Paul J. Laurienti, M.D., Ph.D. Department of Radiology,

- ANSIR, Advanced Neuroscience Imaging Research, Wake Forest University
Page 6
Copyright©2014MZecher

Meaning:

- The more of the brain that is involved - The stronger the associations
- The stronger the implications for learning \& memory

For the At Risk Student

- Difficulties exist
- Gaps in conceptual understanding
- Poor numeracy
- Poor computational skills
- Inadequate background knowledge
- Algebra teachers experience frustration
- Teaching concepts to students who have weak skills
- Explaining complex concepts to students who struggle.

Multisensory Mathematics: UDL

- Addresses the needs of all students
- Uses manipulatives to teach, enhance, integrate and reinforce concepts
- Is research based
- Adapts to any curriculum and to the implementation of Common Core or other State Standards

Manipulatives Must Be.

- Efficient
- For the concept being taught
- Effective
- At illustrating the concept
- Reproducible/ Retrievable

- In memory, making the concept visualization portable

The Goal of Manipulatives

- Manipulatives are:
- Time consuming
- Messy
- The Goal of using them...
- Is to get rid of them
- But they are essential for many students

CRA: An Instructional Sequence

- Concrete: Illustrates the concept
- using hands-on instruction, manipulatives
- Representational: Pictorial,
- illustrates the concept in a retrievable or reproducible format
- Abstract: Uses only numerals, computational algorithms

Problem Solving Math

- Students may use manipulatives to:
- Illustrate a variety of algebraic patterns \& concepts
- Model functions
- Solve problems

- "Code" patterns \& meaning for writing equations from word problems

The Meaning Behind the Math

- Ask any algebra student...
- What is slope?
- What answers do you hear?
- "Rise over Run"
- Slope is "m"
- Slant of a line
- Or... $m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$
- So what does all that mean?

Pattern Recognition

- The Hole'n the Wall Climbing Gym charges admission of \$12 and \$3 per hour for use of the facilities.
- Work with a partner
- Using a pipe cleaner and beads, construct a model of Tim's cost after ten hours on site climbing.

\square

Pattern Exploration

- What does Tim pay when he walks in the door?
- What happens after that?
- How could you describe this pattern? - Use "student friendly words"
- Can you think of other situations like this?
- Tell me the story of...

Extend

- Using your construction
- Create a table of values to post as a price list for the company

Page 17

X=\# of Hours	Y=Total Cost
0	$\$ 12$

CopyrightO2014MZecher

Language is Critical

- Linkage
- Introductory language can be crucial
- Slope Intercept Form
- Constant Rate of Change
- Y- intercept / Starting Value
- Sub-skill practice in coding
- Coding: Identifying a pattern, labeling an element for meaning, applying it to a useful purpose

Applications

- Construct a Linking Cube model which represents a depth of 27 feet of water in a city water tank.
- If the water drains at a rate of 2 feet per hour, how much water will be left in the tank after eight hours.
- Use your model to demonstrate an answer
- You may not use words!

Extend

- Construct a table of values which illustrates the rate of change over time.
- Write each pair of values as an ordered pair.
- Graph the values on the coordinate plane.
- Begin by graphing the point of the starting value. $(y=m x+b)$
- Linked to the equation we begin with "b"

Extension

- Consider the two problems.

- In which problem are the final values increasing?
- In which are they decreasing.
- How could we represent the rate of change with positive and negative integers?

Think Words

- Alice makes $\$ 12$ an hour as a receptionist
- When she arrives, she must first pay $\$ 8$ to park.
- How much will she have if she only works two hours?
- Explain your reasoning. Can you demonstrate this with Unifix cubes?

Reasoning and Sense Making

- Sometimes the manipulatives are more efficient
- Sometimes the graph tells a better story
- Sometimes manipulatives are just inefficient for the story we need to tell
- The point, is can I "see" the solution by using my visual spatial reasoning?

Translation into Math Speak

- If our equation for this type of situation is $y=m x+b$
- And, "m" represents the constant rate of change,
- The "each" ...hour, minute, mile,
- And "b" represents the starting value
- Write a model...to represent...

Sub-Skills: What Works Clearinghouse

- For students who struggle
- Devise a practice sheet exclusively for identifying " m " \& " b " and writing the equation
- Practice sub-skills before computations
- Identify the Constant Rate of Change (m)
- Identify the Starting Value
- Write the equation to model the situation
http://ies.ed.gov/ncee/wwc/PracticeGuide.aspx?sid=2

Sub-skills

- Consider any procedure you must teach.
- Teach necessary sub-skills in isolation
- Then, integrate them into the "whole"
- An example: Many student struggle with the substitution model for solving linear systems
- The problem: Substitution \& Distribution
- Thus: Practice those skills in isolation

Spatial Relations (?)

- Some students need to "see" the growth of quantity by magnitude.
- Gaps in place value and number line concepts keep students from estimating properly or seeing quantity relationships.

Think Construction

- One bacteria cell divides using a process of mitosis
- If each bacteria cell divides in the same way each minute, how many bacteria will exist after eight minutes?
- Use any manipulative on the table to model your solution.

Patterns of Growth

- Divide your table into three groups: front, left and right of the podium
- Participants in front- construct a model of the two and three times tables using Unifix cubes.

Patterns of Growth

- Participants seated to the right of the stage
- Will use the Unifx cubes to construct a pattern of 2^{\times}power.

- Participants seated to the left of the stage will construct a pattern of 3^{x}

A Digression

- Non Math Examples
- Using non-math examples can sometimes be useful in explicating a concept!
- According to math researcher, Steven G. Feifer, D.Ed. of Georgetown University, students need to be able to "See" math
- He calls it: visual spatial functioning

The Neuopsychology of Mathematics-www.SchoolNeuropsychPress.com

What do we mean by Negative?

- How much dirt is in a hole 2 feet by 4 feet by 4 feet?
\square

What a Concept?

How much dirt

 is in a hole 400 feet by 200 feet by ...oh my!The absence of quantity...by Magnitude.
\square

Linking Through Language

- A student a local School has developed an allergic reaction to personal care products!
- What do the products have in common that could be causing the reaction. . .?

What is the Common Factor they share?

- What do you think?
(snot lip gloss + snot hair gel + snot cream)
Snot (lip gloss + hair gel + cream)
$\frac{\text { Snet (lip gloss + hair gel + cream) }}{\text { Snot }}$
Eliminate the Common Factor and you "Simplify the Compound" no more allergy!

Linking the Language

- Emphasize the terms factor and multiple at a basic level.
- Perform multiplication, division and prime factorization using craft sticks
- Define: prime and composite, factor \& multiple

Prime Factorization: Demo

- Using craft sticks
- Find all the factors of one of the following numbers:
>24
>36
>28
- Use craft sticks to illustrate prime \& composite numbers

How Close is Close?

- With your partner,
- Use scissors and a strip of paper
- Fold and cut the strip of paper to half its length.
- Trade places
- Fold and cut in half again
- And again
- And again
- And again

What if...

- What if this construction modeled the length of your steps as you approached a destination?
- Theoretically, would you ever reach it?

Construction: Arrays

- Using Base Ten Blocks Construct an array which represents one of the following:
- Two groups of three
- Three groups of ten
- Two groups of twelve
- Four groups of thirteen
- Twelve groups of fourteen

Activity: Representational Array Multiplication

Samples

MULTISENSORYMATHEMATICS

Multiplication Models

Division

- Division is "finding the missing factor
- Given 24 blocks and a divisor of 2, what would the array look like?
- Given 36 blocks and a divisor of 12 ?
- Arrange 169 blocks into a rectangle or a square without any "leftovers"
- What are the factors?
- Assemble the

Quantity 169

- Using 12 as the divisor (the left side factor)
- Arrange the dividend in a rectangle or square to fit the boundaries of the
- Division is the process of finding the other factor
- And any "left overs" or remainders first factor.

Multiplying Polynomials

- Use the base ten blocks to multiply a two digit number by a two digit number
- 12×13
- Now let's call the ten rod " x "
- $(x+2)(x+3)$
- Using the colored pencils
- Draw this array on your "mini arrays" sheet

Using the Array to Factor

- Assemble in the
- Using the base ten blocks
- The flat $=x^{2}$
- The rod $=x$
- The units are the constant
center of the array
- $x^{2}+5 x+6$
- Place the x^{2} and the constant in diagonal positions.
- How would you arrange the rods to form a rectangle or square?

Using the Array to Factor

- Using two colors of base ten blocks allows for negative numbers
- How would you represent $x^{2}+5 x-6$?
- Using two colors of pencils could you draw this on your mini arrays?

B.C. by Mastroianni and Hart

© Creators Syndicate, Inc. - All Rights Reserved. 2006

Summary

- Employ manipulatives with students
- Emphasize "seeing" the math
- Problem solve with easy numbers and manipulatives
- Transition to the representational level-pictorial and graphical level with linkages between all levels
- Ultimately transition to the abstract using only numbers
- Ample white/ work space
- Ground all new concepts in real world concepts
- Begin with problem solving if possible
- Repetitive language
- Color coding of the new and different
- Link through language

The Multisensory Training Institute at ASDEC

- Dedicated to training teachers, tutors and parents
- In evidence based strategies
- Appropriate for all
- Essential for some
- Marilyn Zecher, M.A. CALT
- Instructor: Multisensory Math I \& Multisensory Math II, Study Skills, www.asdec.org
- multisensorymath@gmail.com
- www.asdecmultisensorymathoneline.blogspot.com

References

- The What Works Clearinghouse
- http://ies.ed.gov/ncee/wwc/PracticeGuide.aspx?sid=2
- Paul J. Laurienti, M.D., Ph.D. Department of Radiology, ANSIR, Advanced Neuroscience Imaging Research, Wake Forest University
- Blakemore, Sarah-Jayne; Frith, Uta; (2005) The Learning Brain, Lessons for Education, Malden MA, Blackwell Publishing
- Butterworth, Brian, (1999). The Mathematical Brain, London, Macmillan
- Dehaene, Stanislas, ((1997), The Number Sense: How the Mind Creates Mathematics, New York, NY, Oxford University Press.
- Deshler, Donald D., S. Ellis, Edwin B., Lenz Keith, Teaching Adolescents with Learning Disabilities: Strategies and Methods, 1979 Love Publishing Company, Denver, Colorado 80222 ISBN 95075399
- Mercer, Cecil D. and Mercer, Ann R. Teaching Students with Learning Problems Merril Prentice-Hall, Upper Saddle River, New Jersey (1993)
\square
Copyright@2014MZecher

