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There once was a sequence… 

 

  Guess the next number: 1, 2, 4, 8, 16, _?_. 

Circles… 

Not so fast! In order to make an intelligent guess, it helps to understand just how these 

first five numbers are generated. Here’s one way: 

 

 

… 

 
       1              2                       3                     4                     5 

 

Going from one circle to the next above, we add another distinct point on the circle and 

connect it with all the previous points, forming the maximum number of regions inside 

the circle. So, when there are 4 points on the circle, there are 8 regions formed inside the 

circle (see circle #4).  

 

The pattern thus generated is (points, regions): (1, 1), (2, 2), (3, 4), (4, 8), (5, 16), (6, __). 

We’ll call this sequence S4 for reasons that will become apparent later. 

 

Funny thing is, no matter how you place the sixth 

point on the circle, the most regions you can count 

is… 31. Hmmm. What’s the pattern?  

 

One method for determining the pattern of a sequence 

is to look at the differences between consecutive 

terms and see if there’s a pattern. Let’s examine the 

differences between consecutive terms of S4: 

(2 – 1)   = 1 

(4 – 2)   = 2 

(8 – 4)   = 4 

(16 – 8) = 8 

(31 – 16)  = 15 

 

We’ll call this new sequence S3: {1, 2, 4, 8, 15}  

Find the differences between consecutive terms of S3 and get S2: {1, 2, 4, 7} 

The differences in the sequence S2 gives the sequence S1: {1, 2, 3}, which is the first 3 

terms of an arithmetic sequence (the Natural numbers, in fact) with a common difference 

of 1 (S0). 
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A Parallelogram? 

The following table builds these sequences from left to right as in Pascal’s Triangle: 

each cell from row 2 on contains the sum of the number in the cell above it and the 

number to the left of the number above it (see the shaded 3+4=7 portion of the table). 

 

N S0 S1 S2 S3 S4     

1 1 1 1 1 1 1 1 1 1 

2 1 2 2 2 2 2 2 2 2 

3 1 3      4 4 4 4 4 4 4 

4 1 4 7 8 8 8 8 8 8 

5 1 5 11 15 16 16 16 16 16 

6 1 6 16 26 31 32 32 32 32 

7 1 7 22 42 57 63 64 64 64 

 

Our sequence S4 is in the fifth column. So far, so good, but where’s the technology? 

Well, here it comes…  

 

S1 is the natural numbers, a linear sequence. 

S2 is (1 + sum of the numbers in S1), denoted by S2 = 
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This is why I quit trying to figure out the function. Who cares to figure out that monster?! 

(see page 7 for some help from a CAS) 
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Regression 

It occurred to me to try the TI graphing calculator’s regression capabilities to try to find a 

function to fit S4. In L1 enter the list {1, 2, 3, 4, 5, 6}. L2 is the list {1, 2, 

4, 8, 16, 31}. What kind of function best models this data? Well, since S0 is a 

constant sequence and S1 is a linear sequence and S2 is a quadratic sequence, I figured 

that S3 must be a cubic sequence and S4 must be a quartic sequence (hence, their 

names!). So execute QuartReg L1, L2, Y1 . Setup the Table beginning at 1 with an 

increment of 1. Lo and behold, our sequence (see figure function below)! The reasoning 

for the linear-quadratic-cubic-quartic pattern also follows from your experience with 

‘rates of change’ in calculus. S3 is the ‘change’ in S4, so if S3 is cubic in nature, then S4 

is quartic. 

 

 
 

The values for a, b, c, d, and e look like rational numbers. It’s easy to see that  

b = -1/4, d = -3/4, and e = 1. It turns out (after providing more decimal places at the end 

and using � Frac) that a = 1/24 and c = 23/24, so our function can be written: 

 

1
4

3

24

23

4

1

24

1 234
+−+−= xxxxy  

 

 

  

 

 

  StatPlot of (L1, ,L2) with Y1  in ZoomStat 
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Pascal’s Triangle 

We can find these sequences in Pascal’s Triangle if we ‘chop off’ the right side of the 

triangle at the appropriate position and then look at the sums of the rows: 

 

1      1 

1 1     2 

1 2 1    4 

1 3 3 1   8 

1 4 6 4 1  16 

1 5 10 10 5  31 

1 6 15 20 15  57 

1 7 21 35 35  99 

1 8 28 56 70  163 

1 9 36 84 126  256 

1 10 45 120 210  386 

1 11 55 165 330  562 

1 12 66 220 495  794 

 

This discovery will lead us to other interesting representations of this sequence later.
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Hyperspace 

Here’s our table again: 

 

 

 

Another geometric pattern hides in this table: 

S0 represents the ‘dividing’ of a point. It cannot be divided so all the values are 1. 

S1 is the number of regions into which points on a line divide the line: 

  

                      

                        (5 points divide a line into 6 regions) 

 

S2 is the number of regions into which lines on a plane divide the plane: 

 

 

 

 

 

 

           (3 lines divide a plane into 7 regions) 

 

S3 is the number of regions into which planes divide space (remember Polya?): 

 

. 

 

 

 

 

 

 

 

                            (4 planes divide space into 15 regions) 

 

So, is S4 the number of regions that 3-space ‘things’ divide 4-space? (and so on?).  

Can you explain why the “circle’s regions pattern” is a model for the dividing of 

hyperspace by 3-space ‘things’? 

S0 S1 S2 S3 S4     

1 1 1 1   1   1 1 1 1 

1 2 2 2   2   2 2 2 2 

1 3 4 4   4 4 4 4 4 

1 4 7 8   8 8 8 8 8 

1 5 11 15 16 16 16 16 16 

1 6 16 26 31 32 32 32 32 

1 7 22 42 57 63 64 64 64 
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Computer Algebra Systems 

 

 

 

 

 

And now for a little help from the TI 

Nspire CAS… 

 

• Enter 1 

 

• then repeatedly compute 

 

          

 

 

 

 

“| n = x”, reads “with n=x” and replaces the n’s in the previous answer ans 

with x’s and gives a polynomial in n. A ‘recursive’ program. 

 

• Try this: paste each polynomial into a sequence function and look at the table of 

values to confirm that these are indeed the correct polynomials! 

 

I was expecting that these polynomials would somehow converge to the Maclaurin Series 

for 2^n, but the alternating signs make it pretty clear that this will not happen.  
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Newton’s Difference Theorem 
 Let’s apply another idea (see Cuoco and Goldenberg, Delving Deeper; Match Making: Fitting 

Polynomials to Tables, The Mathematics Teacher, v 96, No. 3 March 2003, p 180) 

 

Newton’s Difference Theorem: Suppose we have a table whose inputs are the integers 0..m. A 

polynomial function that agrees with the table is: 
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The Table: 

in       out       ∆∆∆∆1        ∆∆∆∆2        ∆∆∆∆3         ∆∆∆∆4  

0 1 0 0 0 0 

1 1 1 1 1 1 

2  2 2 2 2 1 

3 4 4 4 3  

4 8 8 7 

5 16 15 

6 31 

 

but we want to shift the function down 1 unit so x becomes (x-1) and  the ak are all 1. 

 

Then, according to the theorem, 
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xf    (see Pascal’s Triangle again) 

 

Both of which which the TI CAS evaluates as  
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Making connections 
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xf  has a geometric interpretation as well:  

 

• The first term is always 1, representing the circle: the circle contributes one region. 

 

• The second term represents the number of chords: each chord contributes a region. 

 

• The third term is the number of points of intersections of the chords inside the circle: 

each intersection point contributes a region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 circle + 10 chords + 5 intersections = 16 regions 

        1    +   nCr(5,2)  +    nCr(5,4) 

 

 

 

                                                                     1 circle + 15 chords + 15 intersections = 31 regions 

                                                                            1      +   nCr(6,2) +      nCr(6,4) 

 
 


