

Nadine Bezuk San Diego State University Member, NCTM Board of Directors

2015 NCTM Regional Conference Minneapolis, MN

Session Overview

We will discuss:

- Relevant CCSS Standards and other recommendations about fraction reasoning and fraction comparison.
- Models, activities, and online resources to help students understand and reason about comparing fractions on the number line.

@ 2015 SDSU Professional Development Collaborativ

Some of the CCSS "Big Ideas (Clusters) in Grades 3 – 5: Number and Operations—Fractions

- Develop understanding of fractions as numbers (gr. 3)
- 2. Extend understanding of fraction equivalence and ordering (gr. 4)
- 3. Use equivalent fractions as a strategy to add and subtract fractions. (gr. 5)

@ 2015 SDSU Professional Development Collaborative

More about CCSS

 Greater emphasis on using the number line model to represent and act on fractions.

2015 SDSU Professional Development Collaborative

Grade Three CCSS

 Understand a fraction as a number on the number line; represent fractions on a number line diagram. (3.NF.A.2)

@ 2015 SDSU Professional Development Collaborative

Grade Three CCSS (cont.)

• Represent a fraction I/b on a number line diagram by defining the interval from 0 to I as the whole and partitioning it into b equal parts.

Recognize that each part has size I/b and that the endpoint of the part based at 0 locates the number I/b on the number line.

(3.NF.A.2.A)

@ 2015 SDSU Professional Development Collaborative

Grade Three CCSS (cont.)

Represent a fraction a/b on a number line diagram by marking off a lengths I/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. (3.NF.A.2.B)

@ 2015 SDSU Professional Development Collaborative

Grade Three CCSS (cont.)

 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. (3.NF.A.3)

@ 2015 SDSU Professional Development Collaborative

Grade Three CCSS (cont.)

- Compare two fractions with the same numerator or the same denominator by reasoning about their size.
- Recognize that comparisons are valid only when the two fractions refer to the same whole.

(continued)

@ 2015 SDSU Professional Development Collaborativ

Grade Three CCSS (cont.)

 Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

(3.NF.A.3.D)

2015 SDSU Professional Development Collaborative

Grade FOUR CCSS (cont.)

• Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as ½. (continued)

@ 2015 SDSU Professional Development Collaborative

Grade Four CCSS (cont.)

- Recognize that comparisons are valid only when the two fractions refer to the same whole.
- Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

(4.NF.A.2)

2015 SDSU Professional Development Collaborative

Improving Fractions Instruction

Help students recognize that fractions are numbers and that they expand the number system beyond whole numbers. Use number lines as a central representational tool in teaching this and other fraction concepts from the early grades onward.

Developing Effective Fractions Instruction for Kindergarten through Eighth Grade: A Practice Guide (Siegler, Carpenter, Fennell, Geary, Lewis, Okamoto, Thompson, & Wray, 2010).

@ 2015 SDSU Professional Development Collaborative

Considerations

- Most children need to use concrete models over extended periods of time to develop mental images needed to think conceptually about fractions
- Students who don't have mental images for fractions often resort to whole number strategies.

(Post et al., 1985; Cramer et al., 1997)

2015 SDSU Professional Development Collaborative

Types of Models for Fractions

- Area/region
 - Fraction circles, pattern blocks, paper folding, geoboards, fraction bars, fraction strips/kits
- Set/discrete
 - Chips, counters, painted beans
- Linear
 - Number lines, rulers

@ 2015 SDSU Professional Development Collaborative

One Fifth-Grader's Understanding of Comparing Fractions

Circle the larger number or write "=" if they are equal in the pairs below:

$$\frac{1}{6} \frac{1}{3}$$

4.
$$\frac{1}{7}$$
 $\frac{2}{7}$

5.
$$\frac{3}{10}$$
 $\frac{1}{2}$

6. $\frac{1}{2}$ $\frac{4}{6}$

One Fifth-Grader's Understanding of Comparing Fractions

Comparing 1/6 and 1/3:

- According to Ally, "1/3 is bigger, because if you change the digit down from 3, if it was 1/1 it would be equal to I and one's a whole number so it's bigger".
- What does she understand and what is she struggling to understand about comparing fractions?

Ordering Fractions

Fractions with the same denominator have the same-sized pieces, so the numerators tell which fraction has more pieces (and is greater).

Ordering Fractions

Fractions with the same numerator have the same number of pieces, and the denominators tell us which pieces are larger (and which fraction is greater).

Ordering Fractions

Fractions close to a benchmark (such as ½ or 1) can be compared by finding their distance from the benchmark.

@ 2015 SDSU Professional Development Collab

Fractions Equivalent to One-half

$$\frac{2\frac{1}{2}}{5} = \frac{1}{2}$$

The denominator is twice the value of the numerator, so it's equal to 1/2

Ordering Fractions

 $\frac{7}{8}$, $\frac{3}{4}$, $\frac{2}{3}$

Fractions close to one can be compared by finding their distance from one, for example, by focusing on the amount that's missing from the whole.

@ 2015 SDSU Professional Development Collaborative

Ordering Fractions

 $\frac{99}{100}$, $\frac{6}{10}$, $\frac{15}{100}$

100 7 16
Fractions close to one can be compared

by finding their distance from one, for example, by focusing on the amount that's missing from the whole.

@ 2015 SDSU Professional Development Collaborative

Ordering Fractions on a Number Line: The "Clothesline" Activity

- Task:
 - Order fraction tents using a clothesline to represent a number line and
 - mathematically justify the reasons for your ordering.
- Materials: fraction tents and clothesline (string, yarn, etc.)

"Clothesline" Fractions Activity

 $\frac{1}{2}$, $\frac{3}{4}$, 1

@ 2015 SDSU Professional Development Collaborativ

"Clothesline" Fractions Activity 1 2 7 4

"Clothesline" Fractions Activity

$$\frac{1}{3}$$
, $\frac{3}{4}$, $\frac{5}{8}$

@ 2015 SDSU Professional Development Collaborative

"Clothesline" Fractions Activity

3 4 3

@ 2015 SDSU Professional Development Collaborative

"Clothesline" Fractions Activity

 $\frac{1}{8}$, $\frac{7}{8}$, $\frac{11}{12}$

@ 2015 SDSU Professional Development Collaborative

"Clothesline" Fractions Activity

 $\frac{1}{4}$, $\frac{3}{13}$, $\frac{6}{27}$

2015 SDSU Professional Development Collaborative

Free Online Fraction Resources

ConceptuaMath www.conceptuamath.com

Resources → Tool Library → "Try the Tools"

2015 SDSU Professional Development Collaborative

Strengthen Students' Fraction Reasoning by Helping Them: Develop understanding of fractions as numbers. Understand fraction concepts, order, and

- equivalence,
- Use number lines as a central representational tool (but not as the first model students use for fractions) in teaching fraction concepts from the early grades onward.
- Make "Why?", "How do you know?", "Can you explain?" classroom mantras.

@ 2015 SDSU Professional Development Collaborative

Contact me: nbezuk@mail.sdsu.edu San Diego State University

A Few iPad Activities for Fractions

- Number Line
- Motion Math HD
- Math Tappers: Estimate Fractions

@ 2015 SDSU Professional Development Collaborative