Session #17 Cooperative Activities for Calculus

Karen Hyers Tartan High School, Oakdale, MN khyers@isd622.org

Mathematical Practices for AP Calculus

- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
 algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

AP Curriculum Framework

Enduring Understandings (Students will understand that)	Leaming Objectives (Students will be able to)	Essential Knowledge (Students will know that)
EU 2.3: The derivative has multiple interpretations and applications including those that involve instantaneous rates of change.	LO 2.3D: Solve problems involving rates of change in applied contexts.	EK 2.3D1 : The derivative can be used to express information about rates of change in applied contexts.
	LO 2.3E: Verify solutions to differential equations.	EK 2.3E1: Solutions to differential equations are functions or families of functions.
		EK 2.3E2 : Derivatives can be used to verify that a function is a solution to a given differential equation.
	LO 2.3F: Estimate solutions to differential equations.	EK 2.3F1: Slope fields provide visual clues to the behavior of solutions to first order differential equations.
		EK 2.3F2: (BC) For differential equations, Euler's method provides a procedure for approximating a solution or a point on a solution curve.

Slope Field Activity Day 1 $y' = \frac{-x}{y} \quad y' = y(3-y)$ $y' = y^2 - x^2$ y' = y + x $y' = \frac{1}{2}y$ $y' = y + x^2$ $y' = \frac{y}{x}$ $y' = y^2 - x$ y' = xy $y' = x^2 y$ y' = 2x - 3y + 1

Slope Field Activity Day 1 Draw a slope field for your DE

- Use a domain and range of [-2, 2]
- Grid marking by 0.25 units
- Draw slopes only on the integer (lattice) points
- What do you notice?
- Draw a solution through (2, 1)

Slope Field Activity Day 2 Draw segments using your slopes

- Start with A (-2, 1)
- Draw a line segment using the slope line at point A with an x-increment of 0.5 (ending at x=-1.5)
- Estimate the y-value at this new point B
- Calculate the slope at point B
- Repeat until you reach an x-value of 0

Slope Field Activity Day 2 Use Euler's Method

- Start with (-2, 1)
- Use Euler's method with an x-increment of 0.5 and 4 steps
- Compare this result to the one from your slope field

Slope Field Activity Day 3 Determining an Algebraic Solution

- Decide if your DE is separable. If it is, solve it using an initial value of (-2, 1)
- Technology option: Find an online differential equation solver. Use an initial value of (-2, 1)
- Compute the value of y(0) using your solution equation.
- Compare your answer with your slope field results

Slope Field Card Sort Introduction or Review

- With only graph cards, sort the cards into groups. What is your sorting rule?
- Match the equations and verbal descriptions to your graphs

Mathematical Practices for AP Calculus

- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
 algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

AP Curriculum Framework

Enduring Understandings (Students will understand that)	Leaming Objectives (Students will be able to)	Essential Knowledge (Students will know that)
EU 3.4: The definite integral of a function over an interval is a mathematical tool with many interpretations and applications involving accumulation.	LO 3.4D: Apply definite integrals to problems involving area, volume, (BC) and length of a curve.	 EK 3.4D1: Areas of certain regions in the plane can be calculated with definite integrals. (BC) Areas bounded by polar curves can be calculated with definite integrals. EK 3.4D2: Volumes of solids with known cross sections, including discs and washers, can be calculated with definite integrals.

Honeycomb Volume Activity

Compute the volume of your decoration

- Trace the outline on graph paper
- Measure key points on your outline and record the values in data table(s)
- Compute equation(s) using regression to represent your curves
- Write and compute integrals to determine your decoration's volume
- Check for reasonableness. Compare with another group.

Solid of Revolution Volume Activity Compute the volume of your object

- Measure key points on your object and record their values in data table(s)
- Make a graph of your object's outline
- Compute equation(s) using regression to represent your curves
- Write and compute integrals to determine your object's volume
- Use displacement to find the object's actual volume.
- Determine the error in your calculations.

Using TI Nspire CX CAS

- Open a New Document
- 4: Add Lists & Spreadsheets
 - $\circ~$ Enter the data, giving each column a name
- Add a Page 5: Add Data & Statistics
 - Create graph using names for axes labels
 - $\circ~$ Find a regression that works well
- Add a Page 1: Add Calculator
 - Repeat Stat Calculation and save as f1
 - Integrate

Mathematical Practices for AP Calculus

- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
 algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

Whiteboarding Review homework problems

Whiteboarding Brainstorm and Collaborate

Whiteboarding

Review with Gallery Walk

Whiteboarding

AP Test Review

- Explain how to reach each wrong answer on MC
- Work together on FR

Review Projects

Group Review Project

- Song
- Skit
- Cartoon
- Short Story
- Game

ALL with 3 assessment questions

Review Projects

Individual Review Project

Consult an Expert

- Summarize your topic
- Finish 2 statements
- Work 3-8 homework problems

You're the Teacher

- Write the Notes
- Write the Quiz
- Explain it to a friend
- Create a calculator program

Use Tic-Tac-Toe Grid for topics

Resources

- AP Teacher Community and EDG
- Designated Deriver
- AP Calculus Wiki
- Facebook Group -- AP Calc Teachers AB/BC
- Stu Schwartz' Master Math Mentor Website
- Sean Bird's Website
- Lin McMullin's Blog
- TMBoS
- Sign up to be an AP Reader!

Resources

- Slope Field Card Sorts:
- A) Created by Nancy Stephenson, St. Thomas High School, Houston, TX: <u>http://apcentral.collegeboard.com/apc/pu blic/repository/ap08_calculus_slopefields_ca</u> rdmatch.pdf
- B) Created by Debbie Preston, Keystone School, San Antonio, TX: <u>https://apcalcwiki.wikispaces.com/file/view/</u> <u>L)+Binder2+Graphing+PDFS.pdf</u>