Session \#17 Cooperative Activities for Calculus

Karen Hyers
Tartan High School, Oakdale, MN
khyers@isd622.org

Mathematical Practices for

 AP Calculus- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

AP Curriculum Framework

Enduring

Understandings
(Students will understand that . . .)

Leaming Objectives
(Students will be
able to)
LO 2.3D: Solve
problems involving rates of change in applied contexts.

LO 2.3E: Verify solutions to differential equations. involve instantaneous rates of change.

Essential Knowledge

(Students will know that . . .)
EK 2.3D1: The derivative can be used to express information about rates of change in applied contexts.

EK 2.3E1: Solutions to differential equations are functions or families of functions.

EK 2.3E2: Derivatives can be used to verify that a function is a solution to a given differential equation.

LO 2.3F: Estimate solutions to differential equations.

EK 2.3F1: Slope fields provide visual clues to the behavior of solutions to first order differential equations.

EK 2.3F2: (BC) For differential equations, Euler's method provides a procedure for approximating a solution or a point on a solution curve.

Slope Field Activity Day 1

$$
\begin{array}{lll}
y^{\prime}=y^{2}-x^{2} & y^{\prime}=\frac{-x}{y} & y^{\prime}=y(3-y) \\
y^{\prime}=y+x^{2} & y^{\prime}=\frac{1}{2} y & y^{\prime}=y+x \\
y^{\prime}=y^{2}-x & y^{\prime}=x y & y^{\prime}=\frac{y}{x} \\
& y^{\prime}=x^{2} y
\end{array}
$$

$$
y^{\prime}=2 x-3 y+1
$$

Slope Field Activity Day 1 Draw a slope field for your DE

- Use a domain and range of [-2, 2]
- Grid marking by 0.25 units
- Draw slopes only on the integer (lattice) points
- What do you notice?
- Draw a solution through $(2,1)$

Slope Field Activity Day 2

Draw segments using your slopes

- Start with A (-2, 1)
- Draw a line segment using the slope line at point A with an x-increment of 0.5 (ending at $x=-1.5$)
- Estimate the y-value at this new point B
- Calculate the slope at point B
- Repeat until you reach an x-value of 0

Slope Field Activity Day 2 Use Euler's Method

- Start with $(-2,1)$
- Use Euler's method with an x-increment of 0.5 and 4 steps
- Compare this result to the one from your slope field

Slope Field Activity Day 3

Determining an Algebraic Solution

- Decide if your DE is separable. If it is, solve it using an initial value of $(-2,1)$
- Technology option: Find an online differential equation solver. Use an initial value of $(-2,1)$
- Compute the value of $y(0)$ using your solution equation.
- Compare your answer with your slope field results

Slope Field Card Sort

Introduction or Review

- With only graph cards, sort the cards into groups. What is your sorting rule?
- Match the equations and verbal descriptions to your graphs

Mathematical Practices for

 AP Calculus- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

AP Curriculum Framework

Enduring Understandings (Students will understand that ...)	Learning Objectives (Students will be able to ...)
EU 3.4: The definite	LO 3.4D: Apply
definite integrals to	
integral of a function	
over an interval is a	
mathematical tool with	problems involving area, volume, (BC) and length of a curve. many interpretations and applications involving accumulation.

Essential Knowledge
(Students will know that . . .)
EK 3.4D1: Areas of certain regions in the plane can be calculated with definite integrals. (BC) Areas bounded by polar curves can be calculated with definite integrals.

EK 3.4D2: Volumes of solids with known cross sections, including dises and washers, can be calculated with definite integrals.

Honeycomb Volume Activity

Compute the volume of your decoration

- Trace the outline on graph paper
- Measure key points on your outline and record the values in data table(s)
- Compute equation(s) using regression to represent your curves
- Write and compute integrals to determine your decoration's volume
- Check for reasonableness. Compare with another group.

Solid of Revolution

 Volume ActivityCompute the volume of your object

- Measure key points on your object and record their values in data table(s)
- Make a graph of your object's outline
- Compute equation(s) using regression to represent your curves
- Write and compute integrals to determine your object's volume
- Use displacement to find the object's actual volume.
- Determine the error in your calculations.

Using TI Nspire CX CAS

- Open a New Document
- 4: Add Lists \& Spreadsheets
- Enter the data, giving each column a name
- Add a Page 5: Add Data \& Statistics
- Create graph using names for axes labels
- Find a regression that works well
- Add a Page 1: Add Calculator
- Repeat Stat Calculation and save as f1
- Integrate

Mathematical Practices for

 AP Calculus- MPAC 1: Reasoning with definitions and theorems
- MPAC 2: Connecting concepts
- MPAC 3: Implementing
algebraic/computational processes
- MPAC 4: Connecting multiple representations
- MPAC 5: Building notational fluency
- MPAC 6: Communicating

Whiteboarding Review homework problems

Whiteboarding Brainstorm and Collaborate

Whiteboarding

Review with Gallery Walk

Whiteboarding

AP Test Review

- Explain how to reach each wrong answer on MC
- Work together on FR

Review Projects

Group Review Project

- Song
- Skit
- Cartoon
- Short Story
- Game

ALL with 3 assessment questions

Review Projects

Individual Review Project

- Consult an Expert
- Summarize your topic
- Finish 2 statements
- Work 3-8 homework problems
- You're the Teacher
- Write the Notes
- Write the Quiz
- Explain it to a friend
- Create a calculator program

Use Tic-Tac-Toe Grid for topics

Resources

- AP Teacher Community and EDG
- Designated Deriver
- AP Calculus Wiki
- Facebook Group -- AP Calc Teachers AB/BC
- Stu Schwartz' Master Math Mentor Website
- Sean Bird's Website
- Lin McMullin's Blog
- TMBoS
- Sign up to be an AP Reader!

Resources

- Slope Field Card Sorts:
- A) Created by Nancy Stephenson, St. Thomas High School, Houston, TX: http://apcentral.collegeboard.com/apc/pu blic/repository/ap08 calculus slopefields ca rdmatch.pdf
- B) Created by Debbie Preston, Keystone School, San Antonio, TX:
https://apcalcwiki.wikispaces.com/file/view/ L)+Binder2+Graphing+PDFS.pdf

