Using Area Models To Teach Multiplying, Factoring And Polynomial Division

http://tinyurl.com/nzz3wq9

NCTM 2015 Regional Conference Minneapolis Convention Center Thursday, 11/12/15

Lisa Fisher-Comfort AFSA High School Vadnais Heights, MN

Modeling with Area

- Base Ten Blocks
- Generic Model for Multiplication
- Distributive Property
- Multiplying Polynomials
- Factoring
- Completing the Square
- Dividing Polynomials

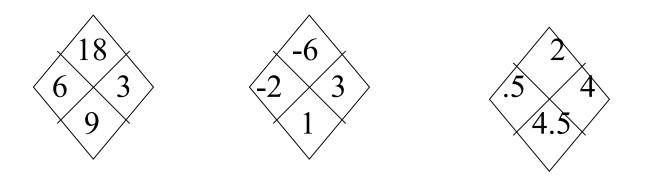
$\underline{Base Ten}$ - Multiplication Area Model

Example 1: Multiply 13 • 15

Patterns:

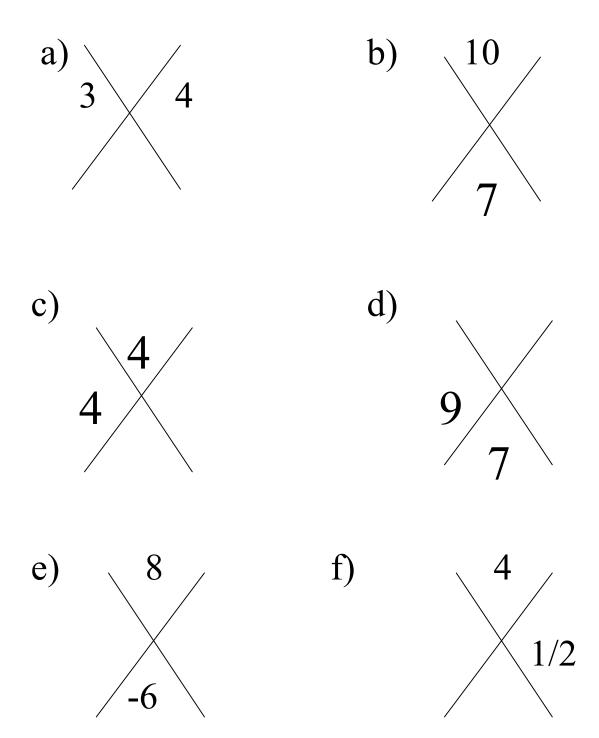
Example 2: Multiply 21 • 14

Patterns:


Base Ten - Generic Model

Example: 18 • 12

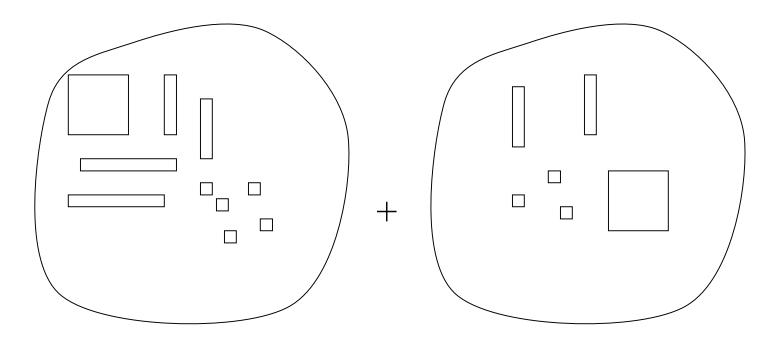
Example: 146 • 57


Diamond Problems

Can you find the Pattern?

When you think you know it, see if you can convince a neighbor.

Use the Pattern you discovered to complete the Diamond Problems.



Meet the Algebra Tiles

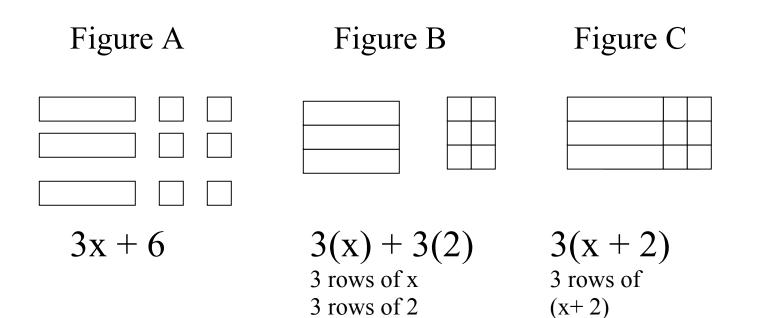
Maya has 4 large squares, 6 rectangles and five small squares. Logan borrows 3 large squares, 4 rectangles and 2 small squares. What does Maya have left?

() - () = ()

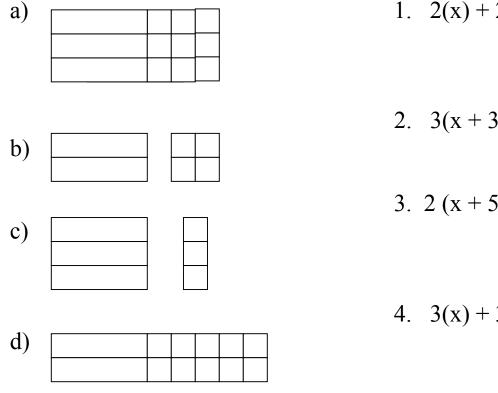
Combine the Like Terms

() + () = ()

Symbolic


$$(5x^2 + 6x + 3) + (2x^2 + 4x + 7) = _$$

Use Algebra Tiles to show that


 $1\mathbf{x} + 2\mathbf{x} \neq 2x^2$

 $2x - x \neq 2$

Grouping Algebra Tiles

Match the following Algebra Tile groupings.

1. 2(x) + 2(2)

- 2. 3(x+3)
- 3. 2(x+5)
- 4. 3(x) + 3(1)

Distributive Property

Use your Algebra Tiles to represent the following. Write your answer as a number sentence.

Example 1: 3(x + 5) "3 groups of x plus 5"

Length \bullet Width = Area

3(x+5) =_____

Example 2: 2(3x + 1) "2 groups of 3x plus 1"

> Length • Width = Area 2 (3x + 1) = _____

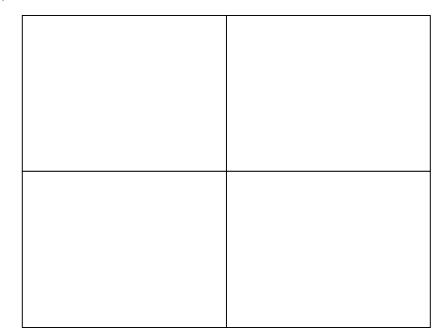
<u>Rectangles</u>: Length • Width = Area

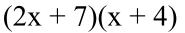
What is the area of a rectangle with dimensions (x + 3) by (x + 2)? Build it.

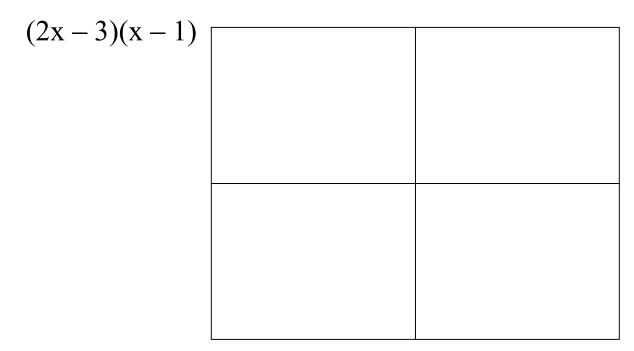
Recall the Base 10 Block Patterns? Do they apply here?

Build It.....

Write the area as a product and as a sum.

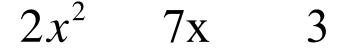

1) A rectangle with dimension (2x+1) by (x+3).


2) A rectangle with dimensions (x+4) by (x+3).


3) A rectangle with dimensions (2x+3) by (x+1).

4) A rectangle with dimensions (x+4) by (x+5).

Generic Rectangles Multiplying Polynomials



Note: Do not introduce negative or large numbers while working with Tiles or Pictures.

More Generic Rectangles $(x+3)(x^2+4x+5)$

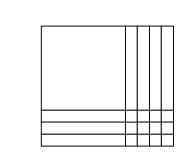
$(2x-3)(4x^2-7x+8)$

Challenge: Using the following Algebra Tiles, build a rectangle

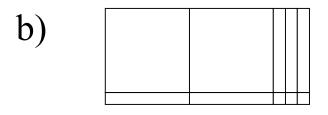
What are the dimensions of your rectangle?

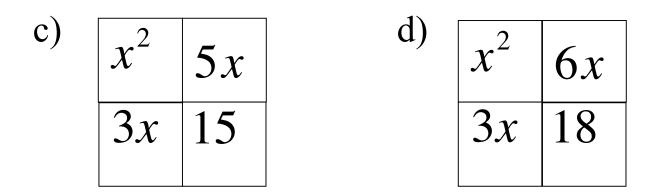
Write the area as a product and a sum.

Area as a product = Area as a sum.


Factoring.....Use your Algebra Tiles

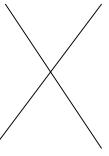
1. What are the dimensions of a rectangle with the area of $3x^2 + 7x + 2$


$\frac{1}{\text{Area as a product}} = \frac{1}{\text{Area as a sum.}}$

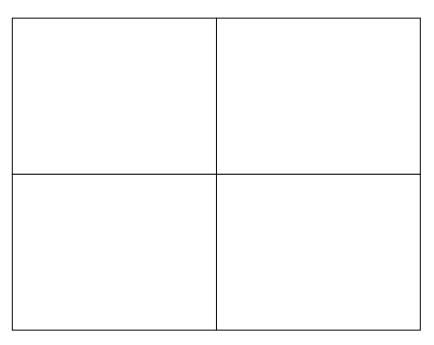

2. What are the dimensions of a rectangle with the area of $4x^2 + 5x + 1 =$ Area as a sum.

Factoring — Write an <u>algebraic equation</u> for the area of each rectangle. Area as a Product=Area as a Sum.

a)



Factoring Using Diamond Problems


Start with $x^2 + 8x + 12$ and draw a generic rectangle. Use the patterns we discovered and fill in the parts we know.

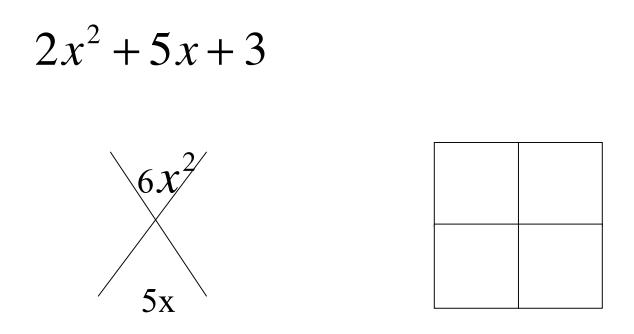
a) Use this information to write and solve a Diamond Problem.

b) Complete the rectangle and write your equation.

Try some more.... $x^2 + 13x + 12$

$x^{2} + 10x - 24$

Special Cases


1) $x^2 + 14x + 49$

2) $x^2 - 36$

3) $25x^2 - 64y^2$

OH-21

Using Diamond Problems to factor when the co-efficient $\neq 1$.

Step 1: Multiply the coefficient of χ^2 by the constant to find the product.

Step 2: Use the generic rectangle to fill in the inside pattern.

Step 3: Find the rectangle's dimensions. (Pull out the G.C.F. Since 2x is the greatest common factor of $2x^2 + 2x$ we know where the 2x should be placed)

Try Some More.....

 $4x^2 + 5x + 1$

$$7x^2 + 4x - 3$$

Completing the Square

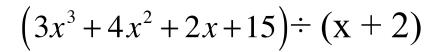
Make a square using the tiles given below.

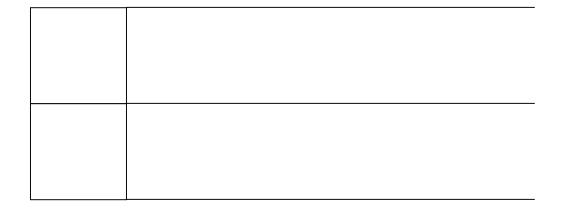
1) $x^2 + 4x + 5$

2) $x^2 + 6x + 2$

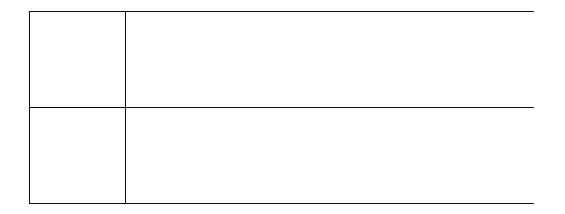
3)
$$x^2 + 3x + 1$$

Dividing Polynomials


 $(2x^3 + 2x^2 - 4x + 24) \div (x + 3)$



$(4x^3+23x^2+14x-5) \div (x+5)$


-

Polynomials (with remainders)

$$\left(5x^3-12x-13\right)\div(\mathbf{x}-2)$$

