Using Area Models
 To Teach Multiplying, Factoring And Polynomial Division

http://tinyurl.com/nzz3wq9

NCTM 2015 Regional Conference Minneapolis Convention Center
Thursday, 11/12/15

Lisa Fisher-Comfort
AFSA High School
Vadnais Heights, MN

Modeling with Area

- Base Ten Blocks
- Generic Model for Multiplication
- Distributive Property
- Multiplying Polynomials
- Factoring
- Completing the Square
- Dividing Polynomials

Base Ten - Multiplication Area Model

Example 1: Multiply 13•15
Patterns:

Example 2: Multiply 21 • 14

Patterns:

Base Ten - Generic Model
Example: $18 \cdot 12$

Example: $146 \cdot 57$

Diamond Problems

Can you find the Pattern?

When you think you know it, see if you can convince a
neighbor.

Use the Pattern you discovered to complete the Diamond Problems.

a)

c)

e)

f)

Meet the Algebra Tiles

Maya has 4 large squares, 6 rectangles and five small squares. Logan borrows 3 large squares, 4 rectangles and 2 small squares. What does Maya have left?
(
) - (
$)=($

Combine the Like Terms Iconic

$(\quad)+($

$$
)=(
$$

)

Symbolic
$\left(5 x^{2}+6 x+3\right)+\left(2 x^{2}+4 x+7\right)=$ \qquad

Use Algebra Tiles to show that $1 \mathrm{x}+2 \mathrm{x} \neq 2 x^{2}$

$2 x-x \neq 2$

Grouping Algebra Tiles

Figure A
Figure B
Figure C
\square
\square
\square
 $3 x+6$
$3(x+2)$

$3(x)+3(2)$
3 rows of x
3 rows of 2

$(x+2)$

Match the following Algebra Tile groupings.
a)

1. $2(x)+2(2)$
2. $3(x+3)$
3. $2(x+5)$
c)

4. $3(x)+3(1)$
d)

Distributive Property

Use your Algebra Tiles to represent the following. Write your answer as a number sentence.

Example 1:

$$
3(x+5) \quad " 3 \text { groups of } x \text { plus } 5 "
$$

$$
\begin{aligned}
& \text { Length } \cdot \text { Width }=\text { Area } \\
& 3(x+5)=
\end{aligned}
$$

Example 2:

$$
2(3 x+1) \quad " 2 \text { groups of } 3 x \text { plus } 1 "
$$

Length \cdot Width $=$ Area
$2(3 x+1)=$ \qquad

Rectangles: Length • Width = Area

What is the area of a rectangle with dimensions $(x+3)$ by $(x+2)$? Build it.

Recall the Base 10 Block Patterns? Do they apply here?

Build It.......
 Write the area as a product and as a sum.

1) A rectangle with dimension $(2 x+1)$ by $(x+3)$.
2) A rectangle with dimensions $(x+4)$ by $(x+3)$.
3) A rectangle with dimensions $(2 x+3)$ by $(x+1)$.
4) A rectangle with dimensions $(x+4)$ by $(x+5)$.

Generic Rectangles Multiplying Polynomials

$(2 x+7)(x+4)$

$(2 x-3)(x-1)$

Note: Do not introduce negative or large numbers while working with Tiles or Pictures.

More Generic Rectangles $(x+3)\left(x^{2}+4 x+5\right)$

$(2 x-3)\left(4 x^{2}-7 x+8\right)$

Challenge: Using the following Algebra Tiles, build a rectangle

$2 x^{2} \quad 7 x \quad 3$

What are the dimensions of your rectangle?

Write the area as a product and a sum.
Area as a product $=$ Area as a sum.

Factoring.Use your Algebra Tiles

1. What are the dimensions of a rectangle with the area of $3 x^{2}+7 x+2$
\qquad
Area as a product $=$ Area as a sum.
2. What are the dimensions of a rectangle with the area of $4 x^{2}+5 x+1=$ Area as a sum.

Factoring - Write an algebraic equation for the area of each rectangle. Area as a Product=Area as a Sum.

a)

b)

c)

d)

Factoring Using Diamond Problems

Start with $x^{2}+8 x+12$ and draw a generic rectangle. Use the patterns we discovered and fill in the parts we know.

a) Use this information to write and solve a Diamond Problem.

b) Complete the rectangle and write your equation.

Try some more..... $x^{2}+13 x+12$

$x^{2}+10 x-24$

Special Cases

$$
\text { 1) } x^{2}+14 x+49
$$

2) $x^{2}-36$
3) $25 x^{2}-64 y^{2}$

Using Diamond Problems to factor when the co-efficient $\neq 1$.

$2 x^{2}+5 x+3$

Step 1: Multiply the coefficient of \mathcal{X}^{2} by the constant to find the product.

Step 2: Use the generic rectangle to fill in the inside pattern.
Step 3: Find the rectangle's dimensions.
(Pull out the G.C.F. Since $2 x$ is the greatest common factor of
$2 x^{2}+2 \mathrm{x}$ we know where the $2 x$ should be placed)

Try Some More.

$4 x^{2}+5 x+1$

$$
7 x^{2}+4 x-3
$$

Completing the Square Make a square using the tiles given below.

1) $x^{2}+4 x+5$
2) $x^{2}+6 x+2$
3) $x^{2}+3 x+1$

Dividing Polynomials

$$
\left(2 x^{3}+2 x^{2}-4 x+24\right) \div(\mathrm{x}+3)
$$

$$
\left(4 x^{3}+23 x^{2}+14 x-5\right) \div(x+5)
$$

Polynomials (with remainders)

$$
\left(3 x^{3}+4 x^{2}+2 x+15\right) \div(x+2)
$$

$\left(5 x^{3}-12 x-13\right) \div(x-2)$

