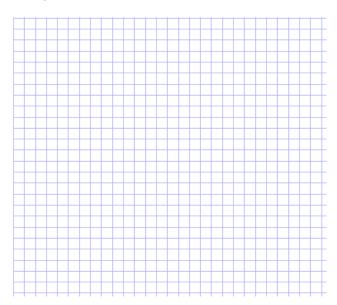

## For each of the following pairs of points:

- Graph the ordered pair and draw the segment formed by the two points and extend the segment to form a line
- Draw the right triangle that helps you to find the distance between the two points, and use it to find the slope of the line
- Use the slope and the endpoints to find two more points that will be on the line. Put the points into the chart, and show that both  $\Delta y$  and  $\Delta x$  are constant.
- Circle one of the points in your chart, and label that point  $(x_1, y_1)$
- Write a statement about how the change in *y* corresponds to the change in *x*
- In the 5th place on the chart, put in the generic point on the line, (x, y) Show the calculations that result because the slope is constant;  $\frac{\Delta y}{\Delta x} = \frac{y y_1}{x x_1}$  where  $(x_1, y_1)$  is the point you labeled above.
- Use Algebra to simplify the equation  $\frac{\Delta y}{\Delta x} = \frac{y y_1}{x x_1}$ , so that it is of the form ax + by = c.
- Solve that equation for x = 0 and for y = 0, and record those points in the chart
- Graph those points on the grid; they should be the *x* and *y* intercepts of the line

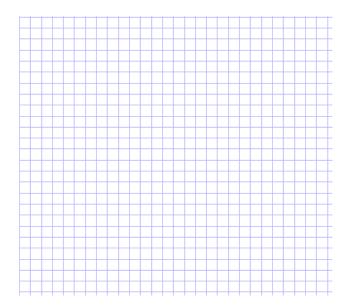
Example: (-4, 7) and (6, -2)




 $\frac{\Delta y}{\Delta x}$ 

Use the format modeled above for the rest of your problems. To receive full credit you must justify your work.


1) (2, 5) and (6, 13)







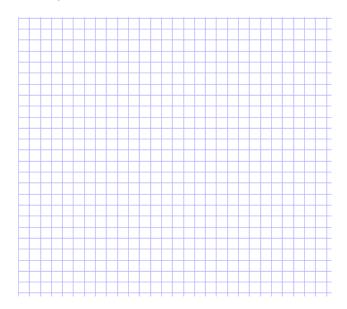
4) (13, 5) and (-2,13)





6) (2, 5) and (2,13)




7) 
$$(-6, -3)$$
 and  $(-12, -2)$ 



8) (0, 5) and (6,0)





