Create Better Tests, Lessons, and Mathematical Thinkers with Rigorous Rubrics

Tim Hudson, PhD

Vice President of Learning
DreamBox Learning
@DocHudsonMath

Minneapolis, MN NCTM Regional 2015

NY Times, 10/5/2014

The final exam for Math 96 ["developmental math"] would make up 35 percent of the total grade, and as the day of the test approached, Mr. de Jesus knew that with the demerits he would face for his poor attendance and his unfinished homework, there was little chance he would pass. On the morning of the exam, he didn't show up, and he failed the class for the third time. As it happened, more than 40 percent of the students in the class also failed.

Common Failure by Design

- Over-weighted final exam.
- Likely use of arithmetic mean.
- Penalties unrelated to content achievement
- Attendance is not a proxy for understanding
- A zero means no evidence of learning was collected
- 1 student failing 3 times
- 40% of students failing in a single term

NCTM Regional Minneapolis 2015

What is QUALITY Feedback?

What percentage did your doctor give you at your most recent routine check-up?

Key Questions

1. What are rigorous learning goals?
2. How is competence defined and measured?
3. How should student progress \& learning be reported?
4. What manageable alternatives are there to traditional averages, percentages, \& overly weighted finals?
5. How can we help all students meet higher standards?
6. What should assessments look like when students have technology readily available?
7. How can we prevent "point grubbing?"

Share which one resonates most for you.

Session as Advertised

Students often care more about points and less about understanding mathematics because percent-based grading systems distract from key outcomes. Learn how teachers collaborated to turn standards into Novice-Expert rubrics that improved tests, lessons and student performance. Hear how rubrics transform curriculum, grading \& rigor at any grade level.

Algebra 1 Program

\% Proficient \& Advanced Algebra 1 End-of-Course Exam (MO)				
	2009	2010	2011	2012
Central HS	50\%	62\%	66\%	81\%
North HS	43\%	52\%	52\%	68\%
South HS	47\%	52\%	67\%	78\%
West HS	72\%	72\%	77\%	86\%
District	51\%	58\%	66\%	78\%
Total Students	1001	960	947	813

Better Goals for Students

David Bressoud, (cont'd)
"There are important mathematical ideas behind these methods, and showing one knows how to solve these problems is one way of exhibiting working knowledge of these ideas."

Better Goals for Students

David Bressoud, (cont'd)
"If a student feels that she or he has learned nothing that cannot be pulled directly from Wolfram| Alpha, then the course really has been a waste of time."
What were the Goals?
From a $5^{\text {th }}$ grade teacher in NY:
"I had a lot of good people teaching me math
when I was a student - earnest and funny and
caring. But the math they taught me wasn't
good math. Every class was the same for eight
years:
"Get out your homework, go over the
homework, here's the new set of
exercises, here's how to do them. Now
get started. I'll be around."

What were the Goals?

"They were so concerned with making sure we knew how to do every single procedure we never learned how to think mathematically. I did well in math but I never understood what I was doing. I remember hundreds of procedures but not one single mathematical idea."

If you want it as an outcome for your students, you can build a Novice-Expert rubric for it

Rubric for Thought

Process: Problem Solving			
Expert	Practitioner	Developing	Novice
Is constantly looking for and posing relevant experiment with a variety of solutions and perspectives	Restates problems; there is more than one way to attack a problem; surveys ow understanding to determine progress toward solution	Accepts problems on (e.g., rarely restates them to make them meaningful); often generates only one or two obvious solutions	

Knowledge: Function Properties			
Expert	Proficient	Developing	Novice
Given tables, graphs, or equations of unfamiliar nonlinear functions, determine and define properties of those functions.	Given a table, graph, or equation, classify a function as linear, quadratic, or exponential and justify your answer.	Given a table, graph, or equation, classify a function as linear or nonlinear and justify your answer. (MO Alg 1 A1D)	Given a table or graph, classify a relationship as a function or nonfunction and justify your answer.

Skill: Factoring Polynomials			
Expert	Proficient	Developing	Novice
Factor polynomials with more than three terms, more than one variable, or a degree higher than two.	Completely factor any given quadratic expression. MO Alg 1 A2B	Factor trinomials with a leading coefficient of one.	Factor out a Greatest Common Factor (GCF) from any polynomial.

Key Points

- Avoid negatives: "The student CAN'T..."
- Share with students \& parents up front
- Expected to be Novice at the start?
- Yes for content (i.e., parabolas, algorithms)
- No for process (i.e., inquiry, problem solving, Common Core SMPs)
- These are not meant to create "ability groups." Engage rich tasks together.

The Mission of the Parkway School District is to ensure all students are capable, curious, and confident learners who understand and respond to the challenges of an ever-changing world.

Key Point

- If it's an outcome we want - or promise - we MUST assess it and report progress to students and parents
- If it's not assessed and reported, we'll never know if students have demonstrated it. (So why even bother to pretend we do it?)

Assessment Design

- Rubrics = design schematics for tests.
- If we couldn't write an assessment item aligned with the rubric, we re-worked the rubric until it described measurable student performance.
- Four test sections: a few problems aligned with each rubric category.
- Students couldn't only complete the Proficient and Expert items on a test.

A, B, C ... That's All

The semester grade will not be calculated using percentages, but rather by using the chart below. Please note that students not earning a C or higher will be required to re-take the first semester of Algebra 1.

Ratings	Number of Ratings (out of 11) used to Determine the Semester Grade			
	A	B	C	Retake 1 St Semester
	At least 5	--	--	--
Proficient	--	--	--	--
Developing	0	2 or fewer	4 or fewer	More than 4
Novice	0	0	0	Any

To help understand this assessment system, here are a few examples:

- 3 Expert ratings, 4 Proficient, and 4 Developing - Semester Grade is a C
- 2 Expert rating, 7 Proficient, and 2 Developing - Semester Grade is a B
- 7 Expert ratings, 2 Proficient, and 2 Developing - Semester Grade is a B
- 8 Expert ratings and 3 Proficient ratings - Semester Grade is an A
- 6 Proficient ratings and 5 Developing ratings - Retake 1st Semester
- 7 Proficient ratings, 3 Developing, and 1 Novice - Retake 1st Semester

Better Help Sessions

Juniors in Honors Pre-Calculus:

- "I have an 89.4\%. Can I do some extra work to get an 89.5% so it'll round up to an A. My GPA could use a 4.0 instead of a 3.0."
- "I need help on Section 3.2."

Freshmen in Algebra 1:

- "I know I can compute mean, median, and mode, but I really don't know which one is best. Can you help me understand how to pick?"

Plan Backwards

1. Identify desired results
2. Determine acceptable evidence
3. Plan learning experiences and instruction

Draft CC SMP 7 Rubric Look for and make use of structure.			
Expert	Proficient	Developing	Novice
I look for patterns and structures outside of class and make connections that are not immediately obvious. I use and analyze the value of these structures.	I look closely to discern useful patterns and structures in class. I step back to get an overview and shift perspective to gain more insight. I make use of structures I find to solve problems.	I look haphazardly for patterns when asked, but I'm not sure how to look or to know when I've found something useful. I am able to use simple structures.	I look for simple, obvious patterns. Iam able to use simple structures with someone's help.

Who Did the Looking?

From a $5^{\text {th }}$ grade teacher in NY:
"I had a lot of good people teaching me math when I was a student - earnest and funny and caring. But the math they taught me wasn't good math. Every class was the same for eight years:
'Get out your homework, go over the homework, here's the new set of exercises, here's how to do them. Now get started. I'll be around.""

Learning Principle

- "An understanding is a learner realization about the power of an idea."
- "Understandings cannot be given."
- "Understandings have to be engineered so that learners see for themselves the power of an idea for making sense of
 things." generate thoughts.

High School Algebra 1 Rubric, First Semester, 2011-12, Parkway Schools (rev. 10/11)

Standard	Expert	Proficient	Developing	Novice
1. Represent Relationships (Creating Mathematical Models)	Translate quickly and fluently between contexts, tables, graphs, and equations. Select the best representation of a problem in context based on audience and purpose.	1.1 Meaningfully and mathematically represent a contextual situation in multiple ways. Represent a problem in context with a data table, graph, and equation (linear, quadratic, and exponential).	Translate an equation into a graph.	Translate data in a table into a graph. Translate an equation or a graph into a data table.
	Compare all real numbers and place them on a number line.	1.2 Represent, compare, and order rational and irrational numbers, including approximate locations on a number line. N1 A*	Place numbers on a number line and write inequalities if they are all in the same format (i.e., decimals, fractions), if they have the same denominator or the same number of decimal places.	Place numbers on a number line and write inequalities if the numbers are all in the same format (either whole numbers, decimals to two places, or simple fractions).
2. Identify Relationships (Classifying Mathematical Models)	Given tables, graphs, or equations of unfamiliar nonlinear functions, determine and define properties of those functions.	2.1 Given a table, graph, or equation, classify a function as linear, quadratic, or exponential and justify your answer.	Given a table, graph, or equation, classify a function as linear or non-linear and justify your answer. A1D	Given a table or graph, classify a relationship as a function or nonfunction and justify your answer.
	Determine several models (including unfamiliar, non-linear functions) that might represent a given situation. Of those options, justify the model that best represents the situation.	2.2 Determine the type(s) of functions (linear, quadratic, or exponential) that might model a given situation. Of those options, justify the type of function that best models the situation. A3A	Explain the similarities and differences of tables, graphs, or equations of linear, quadratic, and exponential relationships. A1C	Explain the similarities and differences in the tables or graphs of linear and non-linear functions.
3. Analyze Relationships (Making Predictions with Mathematical Models)	Justify the relevant domain and range of any relationship from context.	3.1 Justify the relevant domain and range of a linear, quadratic, or exponential relationship from context.	Determine the domain and range of a relationship from an equation or graph.	Determine the domain and range of relationships given a table.
	Generate an equation that might model a given situation that appears to be linear and use it to make predictions about future data.	3.2 Consider multiple equations that might model a situation. Select and justify the best model for predicting the relationship.	Make and justify predictions about a relationship when given a table.	Make and justify predictions about a relationship when given a graph, including scatter plots. D3A
	Apply new and unfamiliar statistical measures to make predictions and draw conclusions.	3.3 Justify the most appropriate statistical measures of center to make predictions and draw conclusions.	Apply mean, median, mode, and range to solve problems and make predictions. D2A	Find the mean, median, mode, and range of a set of numbers.

[^0]| Standard | Expert | Proficient | Developing | Novice |
| :---: | :---: | :---: | :---: | :---: |
| 4. Operate on Polynomials | Apply additional operations on polynomials, including division, negative exponents, fractional exponents, or powers raised to a power. | 4.1 Perform exponent operations, addition, subtraction, and multiplication on polynomials. A2B | Multiply a monomial by any polynomial and a binomial by a binomial. | Add and subtract polynomials. |
| | Factor polynomials with more than three terms, more than one variable, or a degree higher than two. | 4.2 Completely factor any given quadratic expression. A2B | Factor trinomials with a leading coefficient of one. | Factor out a Greatest Common Factor (GCF) from any polynomial. |
| 5. Interpret and Create Graphs | Identify and interpret the intercepts, rate of change, and maximum and minimum of any function when given a table or a graph. | 5.1 Identify and interpret the intercepts, rate of change, and maximum and minimum of any linear, quadratic, and exponential functions when given a table or a graph. A4A | Identify and interpret the rate of change of linear and exponential functions when given a table. | Identify the intercepts of any function when given a graph as well as maximums and minimums when applicable. |
| | Sketch a quick graph of any polynomial function when given its equation. | 5.2 Sketch quick graphs of linear, quadratic, and exponential functions from equations in various forms. | Find intercepts given the equations of linear, exponential, and quadratic functions. | Find the maximum or minimum of a quadratic function given its equation. |

Algebra 1 - Standard 3.3 Assessment Measures of Central Tendency

Name \qquad

Novice: (Find the mean, median and mode of a set of numbers)
Weights of professional wrestlers (in pounds): $178,235,300,254,277,346,402,178,234,256,345,199,256,267$

1. Find the median. What does this tell you?
2. Find the mode. What does this tell you?
3. Find the mean. What does this tell you?
4. Find the range. What does this tell you?

Developing: (Find the mean, median, range, and mode and use them to solve problems)
Depth of Jelly Fish in the Ocean (in feet):
103, 145, 209, 209, 389, 210, 266, 305, 207 276, 1045, 209, 215, 546, 278, 209, 196, 209
5. Find the mean, median, range and mode.
6. Who would use this information and why?
7. Which statistical measure would be most beneficial and why?

Proficient: (Apply statistical measures of center to solve problems)
8. In Math class, you current test scores are $78 \%, 98 \%, 82 \%, 82 \%, 100 \%, 75 \%$, and 74%. What grade should your teacher give you and why?
9. Your parents said that they would buy you a car if you are able to get a 90% in the class. There is one more test left. Will you get your car? (Prove your answer)
10. The mean cost of baseball tickets is $\$ 15$. The total cost is $\$ 360$. How many friends can you take?

Expert: (Apply the most appropriate statistical measures of center to solve problems, explain why others are inappropriate)

Shoe Sizes Males and Females

	Mean	Median	Mode	Range
Male	9.5	10	8.5	6
Female	8	8	7	7

11. You are the owner of "Cool Shoes" in the mall. You have collecting the following data and hope to make some decisions on what size shoes to order for the next season. You are planning to order 200 pairs of shoes (100 women and 100 men). How many of each size of shoes would you order and why?

Women's order form:

Store	Customers	Sales
1	907	11.20
2	926	11.05
3	506	6.84
4	741	9.21
5	789	9.42
6	889	10.08
7	874	9.45
8	510	6.73
9	529	7.24
10	420	6.12
11	679	7.63
12	872	9.43
13	924	9.46
14	607	7.64
15	452	6.92
16	729	8.95
17	794	9.33
18	844	10.23
19	1010	11.77
20	621	7.41

[^0]: * The codes in bold, such as N1A, are the Missouri state Course Level Expectations (CLE) for Algebra 1

