Presentation 151
 Shapes in Shapes
 Building Number Sense and Formula Sense

Nina Chung Otterson
The Hotchkiss School
Lakeville, CT
notterso@hotchkiss.org

- Starting with Triangles, Squares, and Circles, fit shapes inside other shapes and compare relative Side Lengths and Areas
- Build Unit Tetrahedron out of envelopes
- Each table will collaborate to build a Stella Octangula
- Discuss further properties of these basic 3D shapes and how they fit within each other using the readily available Stella Octangula model

Question:

What part of the area of a Square does an Equilateral Triangle cover?

Shapes in Shapes

Draw a square.
Draw an equilateral triangle with the same side length inside of the square sitting along the bottom.

What part of the area of the square does the triangle cover?

$$
\begin{aligned}
\mathrm{A}_{\text {equil tri }} & =\frac{\sqrt{3}}{4} \mathrm{~s}^{2} \\
& \approx 0.433 \cdot \mathrm{~s}^{2}
\end{aligned}
$$

To fold an equilateral triangle from a square (patty paper works great):

Answer:

The ratio of Areas of an Equilateral Triangle to a Square is $\frac{\sqrt{3}}{4}: 1$.
A Unit Equilateral Triangle takes up 43.3% of the area of a Square.

Question:

What part of the area of a Square does a Circle cover?

Shapes in Shapes

Draw a square.

Draw an inscribed circle.

What part of the area of the square does the circle cover?

$$
\begin{aligned}
\mathrm{A}_{\text {ciricle }} & =\pi\left(\frac{\mathrm{s}}{2}\right)^{2}=\pi \frac{\mathrm{s}^{2}}{4}=\frac{\pi}{4} \mathrm{~s}^{2} \\
& \approx 0.785 \cdot \mathrm{~s}^{2}
\end{aligned}
$$

Answer:

The ratio of Areas of a Circle to a Square is $\frac{\pi}{4}: 1$.
A Circle takes up 78.5% of the area of a Square.

Question:

What is the largest Equilateral Triangle that will fit in a Unit Square with $s=1$?

Largest Equilateral Triangle that will fit in a Unit Square

Scale the cube side to a unit length
$\overline{\mathrm{EB}}$ is 3.5% longer than $\mathrm{s}=1$ not so much longer...

But what about the ratio of Areas?

$$
\frac{\mathrm{A}_{\text {cquil tri }}}{\mathrm{A}_{\text {square }}}=\frac{2 \sqrt{3}-3}{1} \approx 0.464
$$

a bit bigger!

$$
\begin{aligned}
\mathrm{A}_{\text {cuwil mn }} & =\frac{\sqrt{3}}{4} \cdot(\sqrt{6}-\sqrt{2})^{2} \\
& =\frac{\sqrt{3}}{4} \cdot(8-4 \sqrt{3}) \\
& =2 \sqrt{3}-3
\end{aligned}
$$

To fold the largest equilateral triangle in a square (patty paper works great):

$$
\begin{aligned}
& d=\frac{s \sqrt{3}}{2}+\frac{s}{2}=\sqrt{2} \\
& (1+\sqrt{3})_{s}=2 \sqrt{2} \\
& s=\frac{2 \sqrt{2}}{1+\sqrt{3}}=\frac{2 \sqrt{2}}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}=\frac{2 \sqrt{2}-2 \sqrt{6}}{-2}=\sqrt{6}-\sqrt{2}
\end{aligned}
$$

Answer:

The largest Equilateral Triangle that will fit in a Unit Square has side length $s=\sqrt{6}-\sqrt{2}=1.035$ and takes up 46.4% of the area of the Square

Question:

What is the volume of the Stella Octangula in a Cube of side length, $s=1$?

Answer:

The Stella Octangula has a side length of $s=\sqrt{2}$.
The volume of the Stella Octangula is exactly $\frac{1}{2}$ the volume of the Cube.

$$
V_{\text {stella octangula }, s}=\frac{\sqrt{2}}{8} s^{3}
$$

Volume of a Stella Octangula with side length, $s=1$

$V_{\text {sellaocanangula } s=1}=V_{\text {ocathectron, } s=1 / 2}+8 V_{\text {terrahactron }, s=1 / 2}=\frac{\sqrt{2}}{24}+8\left(\frac{\sqrt{2}}{12}\left(\frac{1}{2}\right)^{3}\right)=\frac{\sqrt{2}}{24}+\frac{2 \sqrt{2}}{24}=\frac{\sqrt{2}}{8}$

Volume of a Stella Octangula with side length, $s=\sqrt{2}$
$V_{\text {sellaocangusula }, s=\sqrt{2}}=\frac{\sqrt{2}}{8} s^{3}=\frac{\sqrt{2}}{8} \sqrt{2}^{3}=\frac{1}{2}$
which is pretty remarkable!

Summary

- The volume of a Stella Octangula is $1 / 2$ that of the smallest cube into which it can be placed.
- The solid common to both intersecting tetrahedron is a regular octahedron of edge length s.
- The volume of a Stella Octangula composed of two intersecting tetrahedron of edge length $2 s$, equals 12 times the volume of the smaller tetrahedron of edge length s

The Stella Octngula is 3 times the volume of the regular octahedron of edge length s.

- The volume of a regular octahedron of edge length s is 4 times the volume of the smaller tetrahedron of edge length s, or $1 / 2$ the volume of the tetrahedron of edge length $2 s$.

It is also $1 / 6$ the volume of the cube in which it is the dual, where it sits with its vertices at the midpoints of each face of the cube.

