"They'll Need It for

 High School"Chris Hunter • K-12 Numeracy Helping Teacher
Surrey Schools • Surrey, BC, Ganada reflectionsinthewhy.wordpress.com - @ChrisHunter36 NCTM Minneapolis • November 12, 2015 bit.ly/tnifhsnctm

Chris	Jeff	Marc
18 - cin		
\$75	\$60	\$45

BUY TWO PAIRS.

 GET ONE PAIR FREE!3RD PAR MUST BE OF EQUAL OR LESSER VALUE
"They'll need it for high school." Need what?

Cos dracec by $5 \rightarrow 5=1$
 Our answers to students' questions about the relevance of what we teach might paint the relevance of what we teach might paint mathematics into an undesirable corner.
 World A Defense of Mathematics

1. "The Basics"
long division • times tables • fractions

47. Find the missing side length.	47. Find the missing side lenglt.
$\begin{aligned} & 3^{2}+5^{2}=x^{2} \\ & 9+25=x^{2} \\ & 34=x^{2} \\ & x=5.83 \mathrm{~m} \end{aligned}$	$\begin{aligned} & x^{2}+3^{2} \cdot 5^{2} \\ & x^{2}+6 \cdot 25 \\ & x^{2} \cdot 19 \\ & x=4.36 \mathrm{~m} \end{aligned}$
47. Find the missing side length.	47. Find the missing side lenght.
$\begin{aligned} & x^{2}=5^{2}-3^{2} \\ & x^{2}=25-9 \\ & x^{2}=16 \\ & x=8 \mathrm{~m} \end{aligned}$	$5 \cdot 3 \cdot 2$
47. Find the missing side length.	47. Find the missing side lenght.
isosalees	

Pythagorean Mistakes

\square What math mistake did each student make?
\square What are some implications for our work?

Pythagorean Mistakes
\square What math mistake did each student make?
\square What are some implications for our work?
\square What role did memorization of the times table play?
\square What are some implications for the conversations we could be having?

Research suggests that

2. Pedagogy Preparation
"I want them to get used to it."


```
*)
homepage shapes numers graphs a equations about
```

WHICH ONE DOESN'T BELONG?

THIS WEBSITE WAS INSPIRED BY THE MTBOS with special thanks to Christopher Danielson and his Building a Better Shapes Book.

3. Affective Domain

"Give me a student with a positive attitude towards mathematics, who's persistent, who's curious, ... and she will be successful in high school."

4. Mathematical Thinking

Habits of Mind • Processes • Practices • Curricular Competencies

5. Key Concepts \& Big Ideas

on my mind

They'll Need It for Calculus

1. Proportional reasoning involves the use of multiplicative relationships to solve problems.

Chris Jeff Marc

$\$ 150$
$\$ 90$
$\$ 60$

2. The operations of addifion, subtraction, multiplication, and division hold the same fundamental meanings no matter the domain in which they are applied.

Addition	Subtraction
$231+145$	$1 \frac{1}{4}-\frac{1}{2}$
$2.31+1.45$	$5 x-2 x$
$\left(2 x^{2}+3 x+1\right)+\left(x^{2}+4 x+5\right)$	$5 \sqrt{2}-\sqrt{8}$
Multiplication	Division
23×14	$6 \div 3$
$2 \frac{3}{10} \times 1 \frac{4}{10}$	$(-6) \div(+3)$
$(2 x+3)(x+4)$	$\frac{6}{5} \div \frac{3}{5}$

How are they the same?
\square Evaluate, or simplify, each set of expressions
\square Make as many connections as you can:
\square conceptually \& procedurally
\square pictorially \& symbolically

Which meaning is more meaningful?

Simplify $(1.89 t+15)-(1.49 t+12)$, where t represents the number of pizza toppings

Thank-you!
Determine $\left(F_{2}-F_{1}\right)(C)$, where $F_{1}(C)=\frac{9}{5} C+32$
and $F_{2}(C)=2 C+30$

Solve: $|x-5|=2$

