Evaluate the expressions below (use one operation inside grouping).
a.
b.
c.

Evaluate the expressions below (use two operations inside grouping).
a.
b.
c.

Evaluate the expressions below (More than one set of grouping symbols with more than one operation in each).
A.
B.

Create an expression with an equal value to the expression in problem A.

Read the expressions described in words below. Create a numerical expression for each. (use only 3 numbers and direct operation words)
a.
b.
c.

Read the expressions described in words below. Create a numerical expression for each. (use 4 numbers without grouping or 3 numbers with grouping)
a.
b.
c.

Look at the expression below (5 numbers with no grouping/ 4 numbers with grouping).

Write a statement using words that describes the expression.

Complete the tables below following the rules provided (same operation for each rule).
Rule A:
Start at:
Rule B:
Start at:

Term	Number
1	
2	
3	

Term	Number
1	
2	
3	

Complete the tables below following the rules provided. Plot the ordered pairs created. (different operation for each rule, start at same number).
Rule A: \qquad Starts at:
:___ Rule B: \qquad Starts at:

Term	Number
1	
2	
3	

Complete the table below following the rule provided.
Rule:

Term	Number
1	
2	
3	
4	
5	

If Linda was to
complete another table starting at following the rule

At what term would the two be the same?

Answer the questions below (only whole numbers).

1. is 10 times as much as \qquad .
2. \qquad is $1 / 10$ of \qquad .
3. One coin weighs \qquad grams. How many grams do
\qquad coins weigh?

Answer the questions below (whole numbers \& decimals)

1. How many times larger is the value of \qquad than the value \qquad .
2. x 1/10
3. \qquad $x 1 / 10=$ \qquad
4. \qquad x \qquad $=$ \qquad

Which statements about the values of \qquad and
\qquad are true?

What are the values of the expressions (whole numbers)?

1. 10^{\square}
2.

3.

What are the values of the expressions (decimals)?

3. When \qquad a number by 10 , how is the decimal point moved?
4. What is the value of the missing exponent?
_ $10 \square=$ \qquad

Which original numbers were \qquad by \qquad to create the new numbers?

Original Number	New Number

1. Write the following decimals in standard form (only tenths).
a. b.
2. Write the following number in expanded form (only tenths).
3. Compare using $>$, <, or $=$.
4. Write the following decimals in standard form (up to thousandths).
a.
b.
5. Write the number written in expanded form as a decimal.
6. Select all that are true.

Select all the expressions that show \qquad written in expanded form.
a.
b.
c.
d.

Round each decimal to the indicated place value position.

1. Round \qquad to the nearest tenths place.
2. Round \qquad to the nearest ones place.
3. Round \qquad to the nearest tenths place.

Select all the numbers that round to \qquad when rounded to the nearest hundredth.
a.
b.
c.
d.
e.
f.

Complete the table to show the numbers that can be rounded.

Number	Rounded to Nearest Tenth	Rounded to Nearest Hundredth

Find the products (multiply by a one-digit number).

1. \qquad x \qquad
2. \qquad x \qquad
3. \qquad x \qquad

Find the product (multiply by two-digit numbers).

1. \qquad x \qquad
2. \qquad x \qquad
3. \qquad x \qquad

Fill in the missing number in the problems below.

Find the quotients. Strategy: \qquad

1. \qquad
2. \qquad

Find the quotients. Strategy:

1. \qquad
\qquad
2.

Select all the expressions that have a value of \qquad .
a.
b.
C.
d.

Solve the problems below (only use addition and subtraction).

1. \qquad
2. \qquad
\qquad
3. \qquad - \qquad
4. \qquad $=$

Solve the problems below (use multiplication and division).

1. \qquad x \qquad $=$
2. \qquad
 $=$
3. \qquad $=$
4.

What are the values of the expressions below?

1. \qquad $+$ \qquad X \qquad
2. \qquad x \qquad
\qquad

Solve the problems below (denominator is a multiple of the other).
1.

2. \qquad $+$ \qquad
3. \qquad - \qquad 4. \qquad \ldots $=$

Solve the problems below (use mixed numbers).
1.

2. \qquad
\qquad
3. \qquad -___
4. \qquad - \qquad $=$

Solve the problems below (use regrouping).

1. \qquad $+$ \qquad $=2$. \qquad $=$
2. What is the missing number?

Solve the word problem below.

Solve the word problem below.

Solve the word problem below.

1. Write the expressions below as fractions.
a. \qquad b. \qquad
2. Write the fractions below as division problems.
a. \qquad b. \qquad

Solve the expressions. Write the quotients as fractions.

1. \qquad \div
2. \qquad
\qquad
3. Joe has a \qquad foot long board. He needs to cut it into \qquad equal length parts. How many feet long should each section of the board be?

Look at the expression below.

Between which two consecutive whole numbers does this value lie?

Solve the problems below (multiply a fraction by a whole number).

1. \qquad X \qquad
2. \qquad X \qquad
3. \qquad X \qquad

Solve the problems below (multiply a fraction by a fraction, include improper fractions).

1. \qquad X \qquad
2. \qquad X \qquad
3. \qquad X \qquad

Find the area of the rectangles below (sides must be fractions).

Which of the expressions below would represent this statement:
a.
b.

Select all the expressions that have a value greater than
\qquad
a.
b.
c.
d.

Logan multiplied by a number. The product was less than the original number.

Select all the numbers below that Logan could have multiplied his original number by.
a.
b.
c.
d.
e.

Find the quotient (use whole number less than 5 divided by a fraction).

1. \qquad
2. \qquad \div \qquad
3. \qquad \because

Find the quotient (use whole number or denominator that is less than 10)
1.

2. \qquad \div \qquad
3. \qquad \div \qquad
4. Write a multiplication sentence that represents the problem in number 3 .

Solve this problem by drawing a model to represent the answer.

Julio has \qquad pounds of candy. He wants to put the candy into bags so that each bag has \qquad of candy.

Convert the measurements.
—_
$\mathrm{Km}=$ \qquad m
\qquad
\qquad

$$
\mathrm{Kg}=
$$

$\mathrm{Kg}=$ g
$\ldots \quad \mathrm{lb}=$ \qquad
\qquad
L= \qquad mL
\qquad $\mathrm{ft} .=$ \qquad in. \qquad

Convert the measurements.
\qquad c. $=$ \qquad pt.
\qquad $\mathrm{ft} .=$ \qquad yds.
\qquad $\mathrm{mg}=$ \qquad g.

Convert the measurements.
c. $=$

G
in. $=$ \qquad miles

Solve the problem below.
Michael is helping with the school play by measuring the fabric for the costumes. He needs \qquad of fabric. He has of fabric. How many more of fabric does he need?

What is the volume of the rectangular prisms below (Print pictures of prisms made of cubes).
1.
2.
3.

Look at the rectangular prisms below. Which of these prisms have volumes between ___ and \qquad units?
(Print several pictures of prisms made of cubes)
a.
b.
C.

Look at the rectangular prisms below. What is the difference between the prism with the greatest volume and the prism with the least volume? (Print several pictures of prisms made of cubes)
a.
b.
c.

Use the formula to find the volume of the prisms?

$V=l x w x h \quad V=B h$
1.

Use the formula to find the volume of the prism.
1.

2. Look at the prism. If the volume is \qquad ?
What is the length of the missing side?

Select all of the prisms that have a volume of \qquad . (Make sure to use one $\mathrm{V}=\mathrm{Bh}$ formula.)
a.
b.
c.
d.

1. Point M is \qquad units away from the origin on the x-axis and \qquad units away from the origin on the y-axis.

Ordered Pair for $\mathrm{M}=$ \qquad
2. Point Z is \qquad units away from the origin on the x-axis and units away from the origin on the y-axis.

Ordered Pair for Z= \qquad

Point T is \qquad units away from the origin on the y-axis.

Which of these ordered pairs could represent point T?
a.
b.
c.
d.
e.
f.

Point X is \qquad units away from the origin on the y-axis. Which of these ordered pairs could represent point X ?
a.
b.
c.
d.
e.
f.

Create two sets of ordered pairs. Write a statement for each set of ordered pairs describing their distance from the origin of the X and Y axes.

Ordered Pair A:
Ordered Pair B:

1. Which point is located at on the grid?
2. Which point is located at on the grid?

1. Point B is \qquad units above and \qquad to the left of Point A. What are the coordinate points for Point B ?
2. Point C is \qquad units south and \qquad units to the right of Point A. What are the coordinate points for Point C?

Dan left home and went ____ units to the \qquad and units got to the park. What
are the coordinate
points of Dan's home?

Look at the shapes below. Name the shapes and describe them by their sides and angles.
A.
B.
C.

Look at each of the shapes. What are ALL the names that could be used to describe each of the shapes.

A.

B.

Look at these two shapes below. Create a Venn-Diagram to compare and contrast the attributes of the shapes.

