Preparing Math Teachers for the Common Core:

Are they (we) ready for this?

Steve Williams
Steve Williams
Husband to April and Father to Kaiden (9) and Bowen (3)
Runner
Professor of Mathematics
Coordinator of Secondary Mathematics Education Secondary Math Teacher at Heart Haven University of PA swillia6@lhup.edu

NCTM-AC 10-22-15

The mathematician's patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics.

- G. H. Hardy, 1940, A Mathematician's Apology

2.NBT. 7

(BEFORE standardized testing begins)
Add and subtract within 1000 , using concrete models or
drawings and strategies based on place value, properties of
operations, and/or the relationship between addition and
subtraction; relate the strategy to a written method.
Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds tens and tens, ones and ones; and sometimes it is nece to compose or decompose tens or hundreds.

But don't look now...

How carefully are we reading the standards?

6.RP. 2

Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship.
$\frac{3}{4}$ isn't a unit rate...or is it?!?!

Don't abuse fractions! They can be looked at as two integers that each mean something or as one number itself.

Three axioms for teaching

1. Know the content being presented.
2. Know more than the content being presented.
3. Teach from the overflow of knowledge.
4. Know the standards inside and out!

NCTM-AC 10-22-15

Goals for Presentation

- To examine the Common Core State Standards (both the content standards and the standards for mathematical practice) and use them to motivate participants to consider more conceptual,
structured, and rigorous pedagogical strategies to teach secondary mathematics (it isn't always our students' fault for not learning).
- To motivate participants to consider other mathematical concepts where we have "shortchanged" our students.
- To provide participants with some alternate ways of viewing certain math topics that are more conceptual than traditional ways of viewing them.
- To help participants begin to be able to see mathematical concepts and structures despite being blinded by the mindless procedures.

NCTM-AC 10-22-15

Ultimate Goal

To find ways to help our future teachers become competent teachers of mathematics in the Common Core Era.
(Consider this: We are about to ask our students to become teachers within a system in which they have not participated.)

Where did this stuff come from?

- Seven years of teaching all levels of secondary mathematics
- Seventeen additional years of working with preservice teachers and talking to them about potential conceptual deficiencies or misunderstandings
- Twenty-four years of trying to closely examine as many mathematical concepts in as much detail as possible
- A sincere interest to have my students (and myself) develop that Profound Understanding of Fundamental Mathematics by looking at concepts in different or non-traditional ways

Three of my favorite problems to get us thinking outside of just procedures

A Transformation Perspective, 1
The inequality interval has been shrunk and moved.
It has been shrunk by $\frac{1}{4}$ (from 8 to 2).
So: $\frac{1}{4}(-2)=-\frac{1}{2}$ and $\frac{1}{4}(6)=\frac{3}{2}$
Now move: $-\frac{1}{2}+m=7$ and $\frac{3}{2}+m=9 \Rightarrow m=7.5$
Therefore, $7 \leq \frac{1}{4} x+\frac{15}{2} \leq 9$ will simplify to $-2 \leq x \leq 6$.

A Transformation Perspective, 2
The inequality interval has been shrunk and moved.
It has been shrunk by $\frac{1}{4}$ (from 8 to 2).
move first: $\frac{1}{4}(-2+m)=7$ and $\frac{1}{4}(6+m)=9 \Rightarrow m=30$
Thus, $7 \leq \frac{1}{4}(x+30) \leq 9$ will simplify to $-2 \leq x \leq 6$.

What one student saw this semester:
-2 needed to get mapped to 7 and 6 needed to get mapped to 9 . So he found the equation of the line between these two points:

$$
y=\frac{1}{4} x+\frac{15}{2}
$$

The point here is to give deep thought to the underlying concepts rather than only considering procedures to common problem
types.

CCSS Mathematical Practices

1 Make sense of problems and persevere in solving them.
Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens constraints. relationships. and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They

7 Look for and make use of structure.
Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in prateration for 1 inng about the distributive property In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric igure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see

CCSS Mathematical Practices

8 Look for and express regularity in repeated reasoning.
Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students migh

My Second "Favorite" Problem

Circle the fractions from the following:
$3,-2, \frac{2}{3}, \sqrt{3},-4.6,5 . \overline{3},-\frac{5}{2}, \pi,-\frac{2}{3}, \frac{25}{5}, 0$

A "first" definition of a fraction: A part of a whole
The CCSS definition of a fraction:
Fraction. A number expressible in the form \bar{z} / b where a is a whole number and 6 is a positiwe whole number. (The word fraction in these standards always refers
to a non-regative number). See also rational number.

Rational numbar. A number expressible in the form \bar{z} / b or $-\bar{z} / \mathrm{b}$ for some fraction z / b. The rational numbers include the integers.

The Developmental Progression of Fractions in the Curriculum

To a high school teacher or a college professor, the diagram above

My Third "Favorite" Problem

Write an equation that has the following solutions:

$$
x=8 \text { or } x=-2
$$

$$
x-8=0 \text { or } x+2=0 \quad \text { (what are the factors?) }
$$

$$
(x-8)(x+2)=0
$$

$$
x^{2}-8 x+2 x-16=0
$$

$$
x^{2}-6 x-16=0
$$

But what about $|x-3|=5$?
$x-3=5$ or $x-3=-5$
$x=8$ or $x=-2$

What does this have to do with...
Write an equation that has the following solutions:

$$
x=8 \text { or } x=-2
$$

If we talked like this, maybe we could take $x=8$ and $x=-2$ and create an absolute value equation instead of only a quadratic one.

Questions to ask: What number is the same distance away from 8 and -2 ; and what is this distance?

Answers: Half way between, or $(8+(-2)) / 2=3$ and the distance is $(8-(-2)) / 2=5$.

Therefore, $|x-3|=5$
What numbers are 5 units away from 3 ?
$3+5=8$ means that 8 is located $|5|=5$ units from 3 in the right direction.
$3+(-5)=-2$ means that -2 is located $|-5|=5$ units from 3 in the left direction.
$-3+(-5)=-8$ means that -8 is 5 units from -3 in the left direction
$-3+5=2$ means that 2 is 5 units from -3 in the right direction.
Problem
Consider this: $2 \sqrt{51 x}=10 \sqrt{51}$. What is $x ?$
Most teachers would immediately go to a procedure.
But why not look at structure first?
Since $10=2 \bullet 5$, what number would go under the radical sign?
25
$x=25$

In the Common Core Era, three things have impressed me the most

(which I really like and I think should transform how we train teachers.).

1. The Mathematical Practices, especially "looking for and making use of structure" (this is a lost art) and "looking for and expressing regularity in repeated reasoning."
2. The "story" of our subject-rather than a hodgepodge of disconnected "things to be able to do"-could return.
3. The mathematical rigor that should make its way back into our classrooms. NCTM-AC 10-22-15

What is my point???

1. Our teachers are not ready for this.
2. We (people who train teachers) are not ready for this.
3. There are many concepts that preservice (and many inservice) math teachers do not know well enough to teach beyond a surface or procedural level. (I have a lot of these on file!)

Secondary mathematics majors (and many inservice teachers) usually have not been provided the opportunities to closely examine many of the basic concepts that they take for granted and will one day have to teach.

- The traditional curriculum to prepare students to teach secondary mathematics feeds into this "gap" in teachers' knowledge. There is usually no course that students take in which to discuss these potential deficiencies.
- We, as their teachers, should admit some of the responsibility in helping to cultivate these deficiencies.
- The Common Core State Standards will require a deeper understanding of mathematics than most teachers currently possess

NCTM-AC 10-22-15

