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Abstract 
 

This study examined the validity of a learning map related to integer understanding by 

evaluating student test responses. A total of 2,846 middle school students responded to an 

assessment consisting of 25 items developed to measure proficiency on 16 integer skills in the 

learning map. Test responses were analyzed using Bayesian analytic techniques and cross 

validation to evaluate model fit. Qualitative measures including item alignment studies and 

implications from relevant mathematics education literature informed revisions to the learning 

map. Benefits of the mixed methods approach, limitations, and implications for future research 

are discussed.  
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Using Test Responses to Validate a Learning Map of Integer Understanding 
 

Introduction and Background 

Effective mathematics teaching requires teachers to have deep understanding of the 

content they are responsible to teach and to understand how students construct mathematical 

knowledge (NCTM, 2014). To this end, the Teaching and Learning principle establishes learning 

progressions as effective tools for planning activities, creating materials, and developing tasks 

and assessments. To support these uses, however, these tools must be analytically refined using 

data about student learning collected within real-world settings (Shea & Duncan, 2013).  

Learning progressions describe how understanding of particular content develops over 

time and experience (Common Core Standards Writing Team, 2013; Popham, 2011). Learning 

trajectories (Clements & Sarama, 2004) and learning hierarchies (Gagné, 1968) also describe 

learning sequences, articulating pathways by which students construct new understandings by 

connecting prior knowledge to new ideas. In comparison, and adding to this array of models of 

student learning, a learning map provides a network representation of learning that encompasses 

linear and hierarchical models, indicating prerequisite relationships between learning targets and 

permitting multiple pathways when appropriate for accessibility by different types of learners. In 

this study, we describe how a section of a learning map was evaluated and refined using both 

qualitative and quantitative techniques. 

Learning Map Development 

 Since 2011, researchers at a large Midwestern university have been developing a 

comprehensive learning map (LM) of the mathematics children are expected to learn from birth 

through high school. A learning map consists of nodes and connections; each node describes a 

concept or skill, and connections indicate prerequisite relationships among nodes. Nodes and 
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connections in the LM were defined by consulting relevant mathematics education and cognitive 

psychology literature, which produced an LM containing 2,579 nodes and 5,360 connections, 

suggesting a fine-grained view of mathematical learning.   

 While initial map development was primarily grant-funded as the basis of an assessment 

program, we propose that the LM can be used by educators to improve instruction and learning 

for all students. We believe the LM can be used by teachers, who may lack deep understanding 

of mathematics they are responsible to teach, to deepen their mathematical knowledge, analyze 

standards and curriculum, and design productive instruction.  However, the potential utility of 

the LM to guide instructional planning or assessment development is limited by its accuracy as a 

representation of student learning. This study responds to the call to develop systematic 

approaches for revising learning models using empirical data (Shea & Duncan, 2013), with our 

focus being on a LM section depicting the development of proficiency with integers. 

Validation Techniques 

Learning models can be validated using qualitative techniques (e.g, student interviews 

and instructional observations) or quantitative methods, (e.g., test responses) (Leighton, Gierl, & 

Hunka, 2004). Multiple statistical models are available to analyze the fit of data linked to a 

theoretical learning model to that learning model, while other methods use response data solely 

to determine a learning model. Wang (2005) proposed a genetic algorithm based method for 

determining optimal curriculum for schools, which reduced the amount of time needed to arrange 

academic courses into an optimal curriculum. Cen, Koedinger, and Junker (2006) described a 

process for analyzing multi-dimensional skill maps (e.g., the LM), whereby successive 

adjustments to a map were analyzed to determine the arrangement of nodes and connections that 

best fit available data. Desmarais, et. al. (2007) presented a framework for identifying structures 
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from student data and called these structures Partial Order Knowledge Structures (PoKS). The 

PoKS framework is probabilistic in nature and infers the structure from the student’s responses 

to a poll of items. One limitation of this method is that when the number of items is large, the 

approach is not scalable. In the current study we combined learning theory with quantitative 

analytical techniques to evaluate a section of the LM related to integers, using data collected 

from student responses to a test developed for the same section of the LM.  

 Different techniques are available to examine how accurately a statistical model derived 

from data represents, or fits, the data. Models can overfit or underfit the data from which they are 

derived. A model that overfits falsely includes random fluctuations in the data, resulting in a 

model that represents the specific data very well but that does not adequately represent the 

meaningful relationships in the data more generally. A model that underfits fails to capture the 

meaningful relationships in the data. Either source of ill fit leads to faulty predictions when the 

model is used to generate new information. An effective method to eliminate the problem of 

overfitting or underfitting is to derive a model from one data set and then test that model on a 

different data set. A variation of this method is to use k-fold cross validation (Browne, 2000, 

Refaeilzadeh, et. Al. 2009), which is a method for iteratively splitting the available data k-times 

so that some of the data is used to generate a statistical model and the remaining data is reserved 

for testing the fit of that statistical model. In an initial implementation of k-fold cross validation, 

the data are split casewise, where some percentage of the cases are used for training the model, 

and the remaining percentage of cases are used to test the model.  

When considering the accuracy of learning models in the presence of student test 

responses, one can ask, “Does the model allow you to generalize to new students?” and “Does 

the model allow you to generalize to new problems?” Whereas k-fold cross validation can 
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account for each of these concerns independently, more complex implementations attempt to 

account for both concerns simultaneously. In such an implementation, the data are split into 

multiple folds along one or more dimensions. For example, in a study with 100 cases (i.e., 

examinees), the cases might be split into five folds of 20 cases per fold. Then a model could be 

trained on 4/5 of the data and tested on the remaining 1/5 fold (i.e., holdout set). Next, the model 

could be tested on different aspects or cases within the holdout set, in which case the data would 

be split again into multiple folds along the observations (i.e., item responses).  

Integers 

 The LM section pertaining to integers was selected because (a) understanding, graphing, 

and operating with integers comprise important middle school mathematics topics, yet relatively 

few studies have investigated reasoning with integers, and (b) understanding and working with 

integers challenges students, who try to apply their whole number schemes to integers (Bishop et 

al., 2014). Specifically, students who cling to the whole number property that adding always 

produces larger numbers become confused when they attempt to add a positive number to a 

negative number. Because symbolic representations of integers can be confusing, students often 

experience integers initially through problem solving contexts involving assets and debts, sea 

level, or temperature; however, these opportunities permit students to circumvent the need to 

acknowledge that negative numbers possess both magnitude and direction because negative 

values in context can be labeled differently rather than assigned a negative sign (Peled & 

Carraher, 2008). Nevertheless, cases where students must explain that $5 – $7 results in a debt 

instead of an asset provide productive opportunities for introducing integers.  

 Integer notation also causes confusion because the same symbols used for addition and 

subtraction with whole numbers gain new meanings when used with integers. Students must 
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expand their understanding particularly of the “–“ sign to incorporate its meaning as negative, 

opposite, or minus (Lamb et al., 2012). Moreover, the meanings of positive and negative signs 

can change within a problem, requiring students to incorporate their understanding of signs with 

their knowledge of operations on integers. 

 The number line model poses additional challenges to students learning to understand and 

perform operations with integers. Students initially tend to separate the number line at zero 

(Peled, Mukhopadhay, & Resnick, 1989). They first view the number line to the left of zero as 

having similar rules to the number line to the right of zero, and they struggle to coordinate these 

divided number lines into a continuous number line. These aspects challenge students as they 

struggle to understand integers as numbers with magnitude and direction and as a set that is 

symmetric around zero. 

Research Questions 

The purpose of this study was to evaluate the accuracy of the LM as a representation of 

student learning. We describe how a LM, initially created in response to what mathematics 

education scholars suggest about understanding of integers, was analyzed and transformed using 

a combination of analytic techniques and iterative qualitative reviews of the LM nodes and test 

items used to generate the data. The study was guided by one overall research question and two 

sub-questions: 

• What insight is gained about the accuracy of the LM section pertaining to integers from 

analysis of data generated from an assessment informed by that LM section? 

o Which nodes in the LM section are distinct and which nodes are candidates for 

merging? 
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o Which ordered connections depicted in the LM are consistent with data and which 

connections are reversed? 

Answers to these research questions informed adjustments to the LM before providing it as an 

instructional resource. This study illustrates how researchers can use large-scale data sets to 

evaluate hierarchical or networked models of student learning such as the LM. 

Method 

The present study followed principles of evidence-centered design (Mislevy & Haertel, 

2006), which requires test items and forms to be developed explicitly to assess specific concepts 

and skills (Huff & Goodman, 2007). A domain study yielded the initial student model, i.e., LM 

section pertaining to integers, which guided the development of test items aligned to that student 

model. The resulting structure shown in Figure 1 constituted a Bayesian network, where the 

nodes in the LM section represented latent variables, and the test items represented observable 

variables. It is important to note that the LM section presented in this paper only includes the 

latent nodes selected for test development. In reality this section is subsumed by a 

comprehensive learning map that includes both prerequisite and post-requisite connections to 

and from the nodes discussed herein. 

To address our research questions, we applied a combination of quantitative and 

qualitative techniques. We first applied a computer algorithm to the node and item arrangement 

shown in Figure 1 to compare different models in terms of how accurately they predicted student 

responses. The model identified by the algorithm to have the best overall fit to available data is 

shown in Figure 2. We reviewed the recommended model resulting from the algorithmic 

approach, taking into consideration the nature of the test items as well as the latent structure of 

the nodes. Then we revisited the mathematics education literature and considered several 
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additional adjustments to the learning map node structure, yielding the model shown in Figure 3. 

The next sections describe these analyses and adjustments. 

Figure 1. Learning Map Section Related to Integers – Form 1 

 

Note: Rectangles with text descriptions are the LM nodes. The numerals connected to each 
rectangle indicate the numbered test items aligned to each LM node. 
 
Algorithmic Approach to Model Refinement 

We created and applied a hill climbing algorithm that began with the original structure 

shown in Figure 1 and successively merged nodes until the model was reduced to a single 

theoretical skill (i.e., node). At each stage within this process, items were realigned to their 

merged skills, the model was tested using cross validation, and model fit (i.e., the accuracy with 

which the model predicted student responses) was assessed using Root Mean Square Error 
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(RMSE). RMSE was calculated by squaring the difference between each actual value and 

predicted value and then finding the average value of the squared differences.  Taking the square 

root of the average yielded the RMSE value for each model. Details about this process are 

described by Adjei et al. (2014).  

Results of the hill climbing process suggested three node combinations shown in Figure 

2.  We analyzed each suggested merge by considering the skills or concepts described by the 

affected skills as well as the test items associated to those skills. Generally, the three merges 

suggested in Figure 2 indicated that the items associated with the nodes being merged did not 

adequately draw out the distinct skills indicated by the nodes. We suspect the multiple-choice 

format of the test questions to be partially responsible. For example, three nodes that appeared 

very similar when elicited using a multiple-choice format were ordering more than two integers 

from least to greatest, locating integers on a number line, and representing integers on a number 

line. In these cases, the test items presented sets of integers and required the student the select the 

answer choice that displayed the set in order from least to greatest. The use of a number line 

effectively worked as a particular strategy for ordering the integers. However, locating a 

particular integer that is correctly plotted on a number line is likely a different skill than creating 

a number line model and plotting a specific integer on that number line. The nodes and items 

associated with each recommended merge are discussed in Appendix A. 

Qualitative Approach to Model Refinement 

Results from our initial algorithmic approach prompted us to revisit available literature 

concerning children’s learning to understand and operate with integers. In response to the results 

from the hill climbing process described by Adjei et al., (2014), what we learned from the 

literature, the alignment of the test items to nodes, and in consideration of limitations of the  
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Figure 2. Learning Map Section Related to Integers – Form 2 

 

multiple-choice items administered to students, we adjusted the hypothesized structure. Changes 

included editing a node name, repositioning a node, removing three nodes, adding four nodes, 

and merging two pairs of nodes. After adjusting the map structure with the changes listed below, 

we realigned all items to the new structure, as shown in Figure 3. The implemented changes are 

listed in groups and are followed by explanations of the considerations that led to each type of 

change. 

• Reduced cognitive meaning of explain opposite numbers to recognize opposite numbers  

• Repositioned explain integers to lie later in this map section 

Peled and Carraher (2006) and Kent (2000) describe children initially using counting 

strategies and intuition to recognize values less than zero and operate within problem 

situations involving debt or temperature. Such contexts provide rich opportunities for 

students to ground their initial experiences with negative numbers or quantities in 
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familiar settings. Through deliberately designed instructional sequences (e.g., Gregg & 

Gregg, 2007) students build more sophisticated understanding, culminating in the ability 

to explain integers in terms of the magnitude of what they measure and their direction in 

relation to zero (i.e., positivity or negativity). In response to these recommendations, we 

re-conceptualized the two nodes to better distinguish students’ initial ability to recognize 

opposite numbers from their ability to explain integers, and repositioned the latter node to 

better model it later in the LM as a culmination of understandings about integers. 

• Removed represent integers on a number line  

• Removed explain relationship between inequalities and position on the number line  

• Removed recognize integer coordinate pairs  

• Added locate whole numbers on a number line 

• Added locate negative numbers on a number line  

• Added add two integers with different signs  

• Added subtract two integers with different signs 

Although the items on our integers assessment were developed specifically for the nodes 

shown in Figure 1 and described in Table 1, our initial analyses suggested different item-

node alignments. After re-examining the items, the nodes, and the literature, we 

determined that some of the items better aligned to skills that were not included in Figure 

1 or Figure 2. Specifically, we created new nodes to disentangle adding two integers with 

different signs and subtracting two integers with different signs and aligned to these 

nodes two items that were previously associated with explaining opposite numbers, 

which better reflected the levels of integer knowledge described by Peled (1991) and 

Peled, Mukhopadhyay, and Resnick (1989). Similarly, and responding to these same 
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authors’ recommendations, we inserted nodes to separate the abilities to locate whole 

numbers on a number line and locate negative numbers on a number line, and realigned 

items previously associated with representing integers on a number line to these more 

specific nodes. This realignment also improved the descriptive accuracy of the nodes for 

these items. Whereas our integer assessment was entirely multiple-choice, no item 

actually required students to create their own representation of a number line. Thus our 

items that asked students to identify one of four number line graphs that showed a given 

integer graphed correctly better reflected the ability to locate whole numbers, negative 

numbers, or integers on a number line. 

• Merged locate negative numbers on a number line with locate integers on a number line.  

• Merged order two or more integers from least to greatest and order two or more integers 

from greatest to least. 

Our initial data analyses indicated that these pairs of nodes were not distinguishable in 

our data. Because we were seeking a best fitting model, we merged these pairs of nodes, 

despite recommendations (e.g., Peled, 1991) to distinguish the abilities to locate negative 

numbers on a number line and locate integers on a number line. Discussion of this 

decision follows in our results section. 

Each of the three node and item arrangements were analyzed to identify the model that 

was (a) consistent with recommendations from the literature describing student learning to 

operate with integers, and (b) possessed the highest fit statistics. For each model, we 

implemented cross validation and the model fit analyses to arrive at metrics that would help us 

identify the node and item arrangement with the best fit. 
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Figure 3.  Learning Map Section Related to Integers – Form 3 

 

Model Fit Analyses 

We represented each model as a Bayesian Network and used Murphy’s Bayes Net toolkit 

for MATLAB (Murphy, 2001) to fit the models. Each representation of the models had latent 

and observed nodes. The latent nodes represented the skills in the learning map and the observed 

nodes represented the test items.  An estimate of each student’s knowledge of each skill was 

learned from the data, and this estimate was then used to predict that student’s performance on 

other held-out items aligned to the same skill. This estimate of the students’ knowledge was 

dependent on the estimates of his/her knowledge of the prerequisite skills of the given skill, 

according to the structure proposed in each version of learning map. For example, suppose skill 

A had prerequisite skills B and C. Our estimate of a student’s knowledge of skill A was based on 

that student’s knowledge of skills B and C. Expectation Maximization (Moon, 1996), a hill-

climbing data mining algorithm, was used to learn the estimates of students’ knowledge from the 
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data set, and these estimates were then used to predict student performance on the items attached 

to the nodes in the learning map. 

Cross Validation  

To evaluate the fit of each model, we investigated the accuracy of predicted responses on 

some items, given the responses to other items. We used cross-validation (Browne, 2000) as a 

means to make visible whether each model overfit or underfit the available data. In this study, we 

divided the data into five student folds and three item folds, where student folds were selected 

randomly, and item folds remained constant for each step in the analysis. For each of the five 

student folds, the model was trained on the other four folds of students and tested on the fifth 

fold that was held out during the training process. For each test set, we split the item responses 

into three different folds. Two of the item folds were provided to the model as evidence while the 

model predicted the item responses for the third fold. This process was used for each round of 

the cross-validation. In general the cross-validation process uses the entire test data for 

prediction; however in this study, we provided some of the test data as evidence to the model and 

tested the model on the remaining data. We applied this more complicated strategy in order to 

improve the predictive accuracy of the model simultaneously for both students and items. By 

using this complex validation process, we were able to investigate the power of the model to 

generalize to both unseen students and unseen items, as evidenced by the accuracy of predicting 

responses of specific students to specific test items. The resulting model allowed us to state how 

accurately we could predict new student responses. 

We used Root Mean Squared Error (RMSE) of the predicted responses to measure the 

accuracy of each model, where a smaller RMSE indicated better fit. RMSE was used because it 
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penalizes errors in predictions; thus a model with a smaller RMSE score had higher predictive 

power and was a better representation of student knowledge. 

Data Sources 

Data was collected in Spring 2013, from 2,846 middle school students attending public 

schools in a large Midwestern state. Students, whose teachers elected to administer this optional 

assessment, responded to 25 items developed specifically to address the16 nodes shown in 

Figure 1. Each skill was assessed by one or more multiple-choice items. Learning map nodes and 

the numbered items aligned to each node are shown in Table 1, where Form 1 indicates the item-

node alignments shown in Figure 1, Form 2 indicates the item-node alignments shown in Figure 

2, and Form 3 indicates the item-node alignments shown in Figure 3. 

Table 1. Node and Item Alignment Information  

Node Name 
Form 1 
Item 
Numbers 

Form 2 
Item 
Numbers 

Form 3 
Item 
Numbers 

add two integers with different signs NA NA 1 

compare two integers using symbols 7, 8 7, 8 7, 8, 19 

explain inequalities from real-world contexts 22, 23 NA 22, 23 

explain inequalities from real-world contexts; represent 
inequalities from real-world contexts NA 22, 23, 

24,25 NA 

explain integers 3, 4 3, 4 3, 4, 5 

explain opposite numbers 1, 2, 5, 6 1, 2, 5, 6 NA 

explain relationships between inequalities and position on the 
number line 19 19 NA 

graph integer coordinate pairs 16 16 14, 16 

locate integers on a number line 11 NA 11 

locate integers on a number line; locate negative numbers on a 
number line NA NA 11, 13 

locate whole numbers on a number line NA NA 12 
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Node Name 
Form 1 
Item 
Numbers 

Form 2 
Item 
Numbers 

Form 3 
Item 
Numbers 

order more than two integers from greatest to least 9 9 9 

order more than two integers from greatest to least; order more 
than two integers from least to greatest NA NA 9, 10 

order more than two integers from least to greatest 10 NA NA 

order more than two integers from least to greatest; locate integers 
on a number line; represent integers on a number line NA 10, 11, 

12, 13 NA 

recognize  opposite numbers NA NA 6 

recognize integer coordinate pairs 14 14 NA 

recognize opposite numbers on a number line 15 15 15 

relate the meaning of 0 to positive and negative numbers in real-
world contexts 20, 21 NA 17, 21 

represent inequalities from real-world contexts 24, 25 NA 24, 25 

represent integers on a number line 12, 13 NA NA 

subtract two integers with different signs NA NA 2 

use positive and negative numbers in real-world contexts 17, 18 NA 18, 20 

use positive and negative numbers in real-world contexts; relate 
the meaning of zero to positive and negative numbers in real-world 
contexts 

NA 17, 18, 
20, 21 NA 

 

 Table 2 lists classical item statistics for the items on the integers assessment. Mean item 

p-value was 0.75 with a range from 0.35 to 0.96, and we observed an inverse relationship 

between p-value and standard deviation, i.e., lower p-values had higher standard deviations and 

higher p-values had lower standard deviations. 

  



VALIDATING A LEARNING MAP	   	   	   	  
	  

	  

18	  

Table 2. Classical Item Statistics 

Item Number P-Value Standard 
Deviation 

Item Number P-Value Standard 
Deviation 

1 0.36 0.48 14 0.82 0.39 

2 0.35 0.48 15 0.95 0.21 

3 0.74 0.44 16 0.78 0.41 

4 0.58 0.49 17 0.93 0.25 

5 0.40 0.49 18 0.89 0.32 

6 0.93 0.26 19 0.85 0.36 

7 0.70 0.46 20 0.96 0.20 

8 0.67 0.47 21 0.66 0.48 

9 0.83 0.38 22 0.86 0.35 

10 0.90 0.30 23 0.81 0.39 

11 0.91 0.29 24 0.64 0.48 

12 0.84 0.36 25 0.44 0.50 

13 0.85 0.36 AVERAGE 0.75 0.38 
 

Results 

In this section we present the performance of each model and then describe selected 

results for particular items and skills. This description will show which of the components 

contributed to the goodness of fit, focusing on the model shown in Figure 3 as the result of our 

approach integrating qualitative decisions stemming from relevant literature and quantitative 

results from data fitting analyses. 

On completion of the data fitting process, we determined the goodness of fit for each of 

the models. Goodness of fit was determined using four metrics: Area Under the Receiver 

Operating Characteristic Curve  (AUC), Root Mean Square Error (RMSE), Accuracy, and R2. 
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RMSE is an error metric with range [0, 1]. AUC values indicate how well a model predicts 

observations and has a range of [0, 1], where AUC = 1 indicates perfect fit. The RMSE measures 

the distance between the predictions made by model when compared to the data from which that 

model is derived. RMSE values close to zero indicate high accuracy rates, that is, the smaller its 

value, the better the model fits the data. Accuracy is another measure of goodness of fit. It 

measures how close a model’s predictions are to the actual values in the test set. Higher values of 

accuracy indicate more accurate predictions and hence a better model.  

Table 2. Overall Model Level Statistics 

Model AUC RMSE Accuracy R2 

Figure 1 0.78003 0.38791 0.78744 0.20556 

Figure 2 0.79514 0.38352 0.79093 0.22343 

Figure 3 0.78771 0.38500 0.79076 0.21744 
 

Items and Skills  

A model’s goodness of fit is affected by both the hypothesized relationships among the 

LM nodes and the alignment of the test items to those nodes. In other words, when items are not 

associated with the correct nodes (e.g., they draw on different skills than what their nodes 

describe), then the items contribute negatively to the goodness of fit of the model. In order to 

investigate the effect each of the items had on how well the models predicted students’ 

responses, we analyzed results at the item level to determine the individual statistics for each 

item. Table 3 lists items that had high accuracy and low RMSE values for all three models, 

which suggests that these items were properly aligned to nodes and indicates that the region of 

the model containing these items fit the data well. Similarly, Table 4 lists the nodes that 

contributed positively to model fit. 
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Table 3. Item level results 

Item Number Mean RMSE (SD) Accuracy (SD) 

20 0.194 (0.001) 0.961 (0) 

15 0.210(0.002) 0.954(0) 

17 0.247(0.001) 0.934(0) 

6 0.261(0.000) 0.927(0) 

11 0.289(0.002) 0.907(0) 

10 0.293(0.002) 0.901(0) 

18 0.313(0.001) 0.888(0) 

22 0.333(0.005) 0.856(0.002) 

13 0.354(0.003) 0.852(0.000) 
 

Table 4. Node Level Results 

Node Model RMSE 

recognize opposite numbers on a number line 
Figure 1 
Figure 2 
Figure 3 

0.20496 
0.20964 
0.21058 

recognize opposite numbers 
Figure 1 
Figure 2 
Figure 3 

NA 
NA 

0.26082 

use positive and negative numbers in real-world 
contexts 

Figure 1 
Figure 2 
Figure 3 

0.28239 
NA 

0.25914 

 

These results suggest a few skills that performed well at predicting student responses. In 

particular, recognizing opposite numbers on a number line and using positive and negative 

numbers in real-world contexts had a consistently low RMSE for the two models. After the node 

recognize opposite numbers was re-characterized as described earlier, its predictive power 
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improved, indicating that our combination of evaluating analyses and reflecting on the literature 

led to valid model refinement decisions. 

Some nodes consistently performed poorly. Two nodes with consistently poor RMSE 

(e.g., RMSE ≥ 0.45) were explaining and representing inequalities from real-world contexts. 

This poorness of fit was identified in all models, suggesting that these skills may be out of place 

and require further scrutiny to ascertain their placement in the learning map. 

Discussion 

In our exploration of model fit to a learning map section based on data collected from an 

assessment containing all multiple choice test items we incorporated recommendations from the 

literature to evaluate the meaning of analytic results. We found that our initial learning map 

section did not adequately describe the fine-grained steps in learning students have been 

observed to take as they develop sophisticated understanding of integer concepts and operations. 

In response, we modified the learning map and realigned test items based on the skills required 

to answer them correctly and the behavioral expectations for each item (e.g., locate vs. create a 

representation).  

Our results provide insight into the absolute necessity of item alignment to node 

descriptions and the need for multiple test items to elicit specific skills. One problem we 

observed was that in the presence of a fine-grained learning map, such as the one used in this 

study, two items intended to draw on different skills appeared to draw on one skill, as was the 

case for item numbers 11 and 13. Where item 11 included graphs with both positive and negative 

integers, and was intended to draw on the ability to locate integers on a number line, item 13 

only included graphs of negative integers, and was intended to draw on the ability to locate 

negative numbers on a number line. Our model fit improved when we merged these two nodes, 
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yet this merge is inconsistent with the literature describing students operating on the divided 

number line before they can operate effectively on the continuous number line (Peled, 

Mukhopadhyay, & Resnick, 1989). We suspect that if we used more items for each of these 

nodes and collected data from students with a wider range of knowledge of integers, these nodes 

would appear to be more distinct. 

Alternatively, we observed other pairs of items, intended to draw on separate skills, that 

more convincingly drew on one skill, as was the case for item numbers 9 and 10. Where item 9 

required students to order integers from greatest to least, item 10 required students to order 

integers from least to greatest. We did not identify recommendations to separate these skills, and 

our analyses indicated that these were inseparable in our data. Thus this merge of nodes was 

supported both qualitatively and quantitatively, and yielded improved model fit. 

 We believe our integrated, and cross-disciplinary approach to model refinement 

contributes to the literature describing validation of learning progressions, yet we acknowledge 

that the generalizability of our results may be limited by aspects of our data and features of our 

learning map. Specifically, we must endeavor to create and administer multiple items per node 

and collect data from students with a wide range of knowledge and instructional experiences. 

Future work should investigate whether the same patterns in the data suggest similar learning 

sequences among students from different demographic groups. The field should also investigate 

systematic ways of using qualitative data (e.g., student observations) collected in classrooms to 

refine and validate learning models. 

Conclusions 

This study’s focus was to evaluate the accuracy of a LM section pertaining to integers in 

terms of the distinctness of the latent nodes and the order of the connections between latent 
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nodes. Because the data was collected from test responses, we felt it necessary to consider our 

results by reviewing both the latent structures (i.e., nodes and ordered connections) and the test 

items, with particular interest in each item’s alignment to the intended latent node. Our process 

included both quantitative analyses of goodness of fit and qualitative judgments about the skills 

evoked by each test item, the nature of the skills described by the learning map nodes, the 

alignment of test items to learning map nodes, and the relationships among the nodes in the 

learning map. We relied on mathematics education literature to guide and shape our 

interpretations and decisions. 

This study provides a description of how statistical analyses can identify aspects of 

learning theories that do and do not resound with data collected from actual students as well as 

how to consult relevant literature when considering whether and how a learning theory may need 

to be adjusted to better reflect actual student learning. The process we followed for modifying 

the learning map structure included decisions based on research studies investigating student 

learning. While recommendations from the literature provide a sound basis for constructing 

theories of learning, sophisticated statistical analyses are now available for testing these theories, 

to identify potential flaws, and improve our understanding of student learning.  Using these 

methods, researchers can perform empirical studies to determine the strength of proposed 

prerequisite skill relationships and potentially identify ideal sequences for teaching.  
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Appendix A 

 
Results from Hill Climbing Study 

Three nodes identified for merging represented the abilities to locate integers on a 

number line, represent integers on a number line, and order integers from least to greatest. The 

test items associated with these nodes required students to select lists of correctly ordered 

integers or identify the correct number line graph of a particular integer. These test items did not 

adequately distinguish between locating and representing integers on a number line because all 

of the items were multiple-choice, and none provided students the opportunity to construct their 

own number line representations of integers. Furthermore the inclusion of ordering integers from 

least to greatest with the other two nodes may have surfaced because using a number line is 

inherently, cognitively connected to ordering numbers from least to greatest.  

Two nodes identified for merging represented the abilities to use positive and negative 

numbers in real-world contexts and relate the meaning of zero to positive and negative numbers 

in real-world contexts. The test items associated with these nodes required students to interpret 

problems involving integers and choose integer answers or verbal statements about integers. Two 

of the four test items included references to zero either as freezing point or sea level. These items 

were designed to distinguish between the two nodes, i.e., using integers and relating integers to 

zero. However, the relationship between zero and positive or negative numbers is so critical for 

understanding integers, that it is possible one cannot compare integers without considering their 

values in relation to zero. 

Two nodes identified for merging represented the abilities to represent inequalities from 

real world contexts and explain inequalities from real-world contexts. The test items associated 

with these nodes required students to read problems and identify inequality statements that 
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matched the problems. These items did not distinguish between two unique nodes, i.e., 

representing a problem or explaining a problem, as was suggested by the two nodes. 

 

 


