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Recent research on mathematics teaching promotes a view of ambitious instruction that is 

based more directly on research on student learning and calls for teachers to make sense of student 

thinking as a regular part of their instruction (Lampert et al, 2010; Stein, et al, 2008).  In conceptualizing  

an integration of research on learning with research on teaching, Sztajn, Confrey, Wilson and Edgington 

(2012) propose “learning trajectory based instruction” (LTBI) as teaching that draws on developmental 

progressions of student learning as the basis for instructional decisions. In addition, formative 

assessment, one of the most promising educational interventions (Black & Wiliam, 1998), involves 

continually collecting and interpreting evidence of student thinking in order to formulate an 

instructional response.  This interpretive process lies at the core of formative assessment and data use 

(Coburn & Turner, 2012; Spillane & Miele, 2007).  Yet despite the importance of understanding student 

thinking to both current theories of mathematics instruction and formative assessment, we know 

relatively little about how teachers understand and interpret evidence of student thinking in school and 

classroom settings (Coburn & Turner, 2012; Little, 2012) and the relationship between teacher 

interpretations of data and their planning and execution of instructional responses (Heritage, Kim, 

Vendlinski, & Hermann, 2009).  

In this study, we focus on how grades 3-5 teachers make sense of and interpret artifacts of 

students’ multiplicative thinking, namely the written work that their own students produce on 

multiplication and division problems. Our research questions focus on how teachers make sense of this 

evidence of student learning and decide how to respond instructionally: 
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1. How do teachers sort and/or organize a classroom set of student work for analysis? What 

conceptual frames do they draw upon?  

2. How do teachers make sense of examples of their own student work?  What do they pay 

attention to and how do they make sense of the information? 

3. How do teachers draw on their analysis of student work and other information to formulate 

instructional responses? 

 

Relevant Literature 

How teachers notice student thinking in the context of classroom instruction has been a focus of 

much recent research on mathematics teaching (Choppin, 2011; Jacobs, Lamb & Philipp, 2010; Mason, 

2002; Sherin, Jacobs & Philipp, 2010; Star & Strickland, 2008; van Es & Sherin, 2008). Considered an 

important component of teaching expertise, noticing student thinking involves focusing or attending to 

important aspects of complex classroom events (van Es & Sherin, 2008). Jacobs et al. (2010; 2011) build 

on this work to propose the construct of “professional noticing of children’s mathematical 

understanding” as “a set of three interrelated skills: attending to children’s strategies, interpreting 

children’s understandings, and deciding how to respond on the basis of children’s understanding (p.99). 

Their research suggests that these skills can improve with professional development experiences 

focused around student thinking and that learning to attend to student strategies is foundational, but 

not sufficient, in learning to provide robust teaching responses. 

Goldsmith & Seago (2013) extend the concept of noticing to teachers’ interaction with student 

work in professional development settings, noting that it involves “attending to both the mathematical 

content of the task and students’ mathematical thinking.” (p. 170). Similarly, Wilson, Lee & Hollebrands 

(2011) investigated how preservice teachers make sense of students' work on and found that in addition 

to the actions of describing, comparing and inferring, teachers go through a process of restructuring 
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their own mathematical understandings as they collect evidence of multiple approaches and develop 

models of student thinking. Kazemi and Franke (2004) studied facilitated conversations with elementary 

teachers around student work and found that over time teachers began to recognize sophistication of 

strategies, think about better ways to elicit student thinking in the classroom, and develop "possible 

instructional trajectories" that built on student thinking.  Several studies highlight the fact that teachers 

can learn to use specific frameworks for making sense of student thinking, and that this can lead to 

improvement in instructional practice (Carpenter et al, 1988; 1992; Clements et al, 2011; Wilson, 2009). 

Taken together this work has established that teachers’ analysis of student work can be 

improved through professional development. Yet there is little research that explores how teachers 

actually look at and interpret student work in the absence of any intervention. In a large scale study of 

teachers’ capacity for learning trajectory-oriented formative assessment, Supovitz, Ebby and Sirinidies 

(2013) found that the vast majority of teachers in grades K-12 look at examples of student work from a 

procedural perspective, focusing on what students do rather than what they understand. There were 

even fewer teachers (less than 10% overall) who were able to see the student work conceptually and 

place it in a developmental context. Similarly, in a study of sixth grade teachers, Heritage et al, (2009) 

found that teachers' interpretation of student responses to an algebraic problem were mostly either 

empty (no explanation) or procedural, rather than conceptual. In both of these studies, teachers were 

looking at pre-constructed or fictitious examples of student work.  

The current study builds on this body of work to further explore the different frameworks, 

organizing principles, and kinds of knowledge that teachers draw upon in making sense of their own 

students’ work for instruction. Understanding how teachers make sense of the artifacts of student 

thinking, factors that influence their interpretation, and practices that are more productive for 

generating instructional interventions is important for both designing professional development 

experiences to support and improve formative assessment practices. 
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Methods 

This study is part of larger study of how learning trajectory-oriented formative assessment can 

be used to provide teachers with greater understanding of student thinking and lead to more refined 

instructional responses, focused specifically on students’ multiplicative thinking in grades 3-5 

mathematics. In this paper we report on the baseline qualitative inquiry that explores teachers’ sense-

making around their own student work before any intervention. We used semi-structured cognitive 

interviews (Fontana & Frey, 2003; Means & Loftus, 1991) to understand how teachers’ interpret their 

own student learning data and draw on that evidence to formulate instructional responses.  

We collected data from 20 teachers (in grades 3-5) in three elementary schools in an urban 

setting.  The three schools were purposefully selected to represent different contexts:  nine teachers 

from a high-performing diverse urban public school, five teachers from a low-performing economically 

disadvantaged urban public school, and six teachers from a diverse bilingual charter school.  The 

teachers vary in terms of professional experience ranging from 2-31 years, with the median of 9.5 years 

of experience. There is also variation in terms of professional development experiences in mathematics 

and the primary curriculum being used to teach mathematics.  

Each interview consisted of three distinct activities. Teachers were asked to bring a class set of 

open ended work on a multiplication or division problem to the interview. All but one of the teachers in 

the sample brought student work on either a word problem or a computation problem where students 

were expected to show their work. The remaining teacher brought an exit slip that consisted of five 

closed questions focusing on writing related multiplication and division equations.  In the interview 

teachers were asked to categorize or sort the work in ways that made the most sense them, while 

talking aloud about their process.  Second, researchers asked teachers to highlight at least one example 

from each category and to speak more in-depth on the work in terms of strengths and weaknesses.  
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Lastly, teachers were asked to explain what if any instructional responses they may have for the 

students discussed as well as for the class as a whole. The interviews ranged between 20-45 minutes 

and were audio-recorded and transcribed. We also collected copies of the student work that was 

discussed. 

The data was analyzed in two primary ways. First, an analytical memo was produced for each 

participant (Strauss & Corbin, 1990). The memo tracked ways teachers categorized student work, 

examples and reasoning for the specific student work referenced for each category, and instructional 

responses respective of the student work. From these memos along with the theoretical framework, we 

applied inductive and deductive codes to the data. We used a grounded theory approach to the data 

looking for interactions and relationships among codes and categories and cases (Charmaz, 2006). 

Following Boyatzis’ (1998) thematic analysis, we focused on both deductive and inductive coding around 

ways teachers made sense of student work and the factors that may influence their sense-making. The 

final codes were then organized into larger categories.  

The largest distinction that emerged was whether the teachers’ interpretation of student work 

drew directly on the evidence or the written work presented on the page or drew on working 

knowledge of the student, such as the student’s work habits, previous performance, or home situation. 

These categories are not mutually exclusive; teachers most often drew on both direct evidence and 

working knowledge to interpret student thinking. In our analysis we looked more closely at how they 

made sense and reconciled these different sources of information to arrive at an interpretation of 

student performance and develop instructional responses. Teachers’ interpretation of the student work 

ranged along a continuum of depth, from a focus on surface characteristics of students work (correct 

answer or neatness), to a descriptive focus (how student solved the problem), to a conceptual focus 

(what the work suggested about what students understood). A final, but less frequently encountered 

level of interpretation was characterized by drawing together the descriptive and conceptual focus to 
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consider both conceptual, procedural, and developmental aspects of student work. These levels of 

interpretation are described in more detail in the next section.   

Similarly, we developed a set of codes for teachers’ planned instructional responses, ranging 

from general (reteaching content, grouping students), to procedural (focus on procedural mastery, 

fluency or efficiency) to conceptual (deepening understanding or connecting procedural and conceptual 

understanding) to developmental (building on student understanding to move towards more 

sophisticated strategies and understanding).  Once the codes were established, all interviews were 

double coded. The research team met to discuss any discrepancies that emerged and agreed on a final 

code. The full code list is presented in Table 2. 

 

Results 

 We first describe the sorting strategies that teachers used to create different categories within 

the class set of student work and explore what those strategies suggest about the conceptual frames 

they were drawing on when sorting. We then turn to teachers' analysis of individual examples of student 

work within the categories they created to illustrate the different levels of analysis of student work and 

instructional responses. Finally, we explore the connections between sorting frames, analysis of student 

work and instructional response.   

 

Sorting Student Work  

When sorting student work, the strategies teachers used to create different piles fell into three 

distinct groups (1) Correctness, where teachers sorted primarily on whether or not the answer was 

correct; (2) Proficiency, where teachers created categories that described a judgment of students' 

overall level of proficiency, often using labels to describe the students or their work; and (3) Strategies, 

where teachers sorted the work by the different strategies that students used to solve the problem. 
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There were also two interviews where teachers did not have a discernible initial sorting frame and 

instead described pieces of work separately.  Table 1 below shows the distribution of these sorting 

frames across the sample in relation to years of experience.  

 

Table 1. Teachers' Sorting Frames in Relation to Experience.  

Sorting 
Frame 

N Description Mean years of 
experience (Range) 

Correctness 10 Initial sort by whether or not student got correct 
answer to the problem or a percentage correct on a 
set of problems 
 

8.7 (4-17) 

Proficiency 4 Combining correctness on task with past 
performance and/or strategy use to sort by overall 
judgment of level of proficiency 

17.5 (6-31) 

Strategies 4 Work sorted by students' use of strategy as 
evidenced in work 
  

13 (2-22) 

No Sorting  2 Teacher did not sort into categories during 
interview despite being prompted 
 

11.25 (2-20) 

 

 While the size of the sample limits our analysis, the sorting frame that teachers used does not 

seem to be directly related to years of teaching experience.  Of the four teachers who sorted student 

work by strategy, three of them had received extensive professional development; all had experience 

looking at student work in grade level teams and one was a recent graduate of a university teacher 

education program that had a substantial focus on the development of student thinking in mathematics 

in both coursework and fieldwork. However, there were other teachers who had similar experiences and 

sorted by correctness or overall judgment. This suggests that sorting student work by strategy may be a 

habit learned only through professional development but that this is necessary but not sufficient 

condition.  Below, we illustrate each of these sorting frames with examples from the interviews.  
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 Correctness. Teachers who sorted student work by correctness either made dichotomous 

groupings (e.g., correct, incorrect) or if there was more than one problem on the page, based the 

groupings on the number correct (e.g., “the kids who didn’t have any of the answers correct; then one 

correct, two correct and all correct”).  Often they also considered another aspect of the student work 

along with correctness, such as whether or not the student showed work to support the answer.  

Underneath this framework is a conceptualization of learning as meeting the standard that has 

been set, and students achieve mastery by solving problems and getting the correct answer. 

This conceptualization has behaviorist roots, and student thinking is less important than student 

performance; in fact student thinking is only important when students are not reaching mastery 

as a means for determining the dosage of remediation.  

Proficiency.  Several teachers made groups by considering multiple factors, such as correctness 

and effective use of strategy, along with their knowledge of how the student typically performed in 

mathematics or performed on other assignments. They often used terms such as “proficient,” 

“advanced,” or “below basic” to describe the students’ performance, vocabulary that is used to describe 

students’ performance on standardized tests and often students themselves.  

These judgments of students’ overall proficiency were often based on both the work under discussion 

and patterns in the student’s performance over time. Teachers often drew on their knowledge of 

students beyond the work itself, such as specific learning profiles or habits they had observed over time. 

Several teachers separated out students who had been formally classified with learning differences.  

Underneath the proficiency framework is a conceptualization of learning as multifaceted--one 

that includes factors in addition to correctness, such as conceptual understanding or use of multiple 

strategies. However, others have noted that in the NCLB era, the terms used to describe different levels 

of proficiency can sometimes suggest a frame of "instructional triage where attention is focused on 

students that are just below the proficiency level " (Horn, Kane & Wilson, 2013). We did not observe this 
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directly in our discussions with teachers of their own student work, though often the language they used 

to describe student proficiency seemed to come from NCLB testing and data use practices.  

 Strategies. A smaller group of teachers sorted their student work primarily based on the 

strategy that the students used to solve the problem, for  example, skip counting, repeated addition, or 

use of a known or derived fact. Sorting by strategy indicated a view of learning that went beyond 

mastery to consider not just whether students solve the problem correctly, but how they solved it. This 

view has its roots in a constructivist notion of learning, where the process of coming to know 

mathematics is as important as the result.  As noted above, three of the teachers who demonstrated 

this sorting strategy were at the school where there was a history of looking at student work in grade 

level meetings,  professional development focused on research on student learning, and a curriculum 

that reflected a student-centered, inquiry-based and conceptually-oriented approach to learning 

mathematics. The fourth teacher had done her student teaching at that school and was a recent 

graduate of a teacher education program with an emphasis on student thinking. Notably, the other 

teachers at that school used either a proficiency framework or did not sort but none of them used a 

correctness framework. At the other two schools where there had not been a practice of looking at 

student work by strategy, most teachers used a correctness framework.    

 In the next section we explore how teachers analyzed specific examples of student work from 

the different piles that they made to represent high, medium, and low level work and the degree to 

which there was a relationship between their initial sort or the underlying conceptual framework of 

learning mathematics and the depth of their analysis of student work.  

 

Interpreting Evidence of Student Thinking 

In analyzing the individual examples of student work in each pile, teachers drew on a 

combination of the evidence on the page and the previous knowledge they had constructed about the 
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student. The codes that were generated from the inductive analysis of the interviews in relation to 

teachers' analysis of the evidence in the student work confirmed and refined a four-level framework we 

had previously developed for teachers analysis of student work : (1) General,  for analyses that focused 

only on surface aspects of the work; (2) Descriptive, for analyses that focused on how students solved 

the problem; (3) Conceptual, for analyses that focused on conceptual understanding connected to use of 

strategy; and (4) Developmental, for analyses that situated the student strategy and understanding 

within a developmental progression of multiplicative thinking.  (See Ebby in press; Ebby, Sirinides & 

Supovitz, 2013).  

However, because this project had teachers looking at their own student work rather than a set 

of pre- constructed responses, teachers often drew upon knowledge they had of the student along with 

the actual work shown on the page to make sense of the student work, resulting in an additional 

category we call working knowledge of students. Kennedy (1982) defines working knowledge as a 

“special domain relevant to one’s job” that is “tentative, subject to change as the worker encounters 

new situations or evidence.” (p. 194). We draw on this definition to conceptualize working knowledge of 

students as a subset of working knowledge focused specifically on what teachers understanding of 

individual students across time and contexts (both in school and out of school).  

Once teachers analyzed the example of student work, we asked them to describe what they thought 

that student needed to progress in their multiplicative thinking. The levels of the instructional response 

codes were similar to the analysis codes:  (1) General, for responses that did not focus on mathematical 

content; (2) Procedural, for responses that focused on teaching a specific procedure or skill; (3) 

Conceptual, for responses that focused on developing conceptual understanding; and (4) 

Developmental, for responses that aimed to move students from their current understanding to more 

sophisticated strategies and/or understanding.  See Table 2 for the complete list of coding categories 

along with descriptions of each category and overall frequencies over the set of 20 interviews. 



11 
 

Table 2. Coding Categories for Teachers’ Analysis of Student Work 

Code Description Freq. # of 
Teachers 

Working Knowledge of Students (N=174)   

Work Habits Descriptions of how student attends to  mathematical tasks, not 
directly related to work shown on the page 

46 19 

Previous Work Descriptions of prior lessons taught or previous performance on 
assignments or assessments 

43 16 

Performance 
Level 

Descriptions of students’ performance l level relative to others, 
aptitude, or overall ability 

38 12 

Learning Profile Description of student status within the school (e.g., Special 
Education, ELL) 

16 10 

Home Life Descriptions of students’ life outside of school as it relates to 
student performance  

12 7 

Dispositions Descriptions of students’ emotional response to mathematical 
work or school 

10 8 

Classroom 
Behavior 

Descriptions of students’ behavior during class, as it relates to 
student performance 

8 6 

Levels of Analysis of Student Work (N=411)  

General Focus on format of answer, correctness  or nonspecific judgment 116 20 

Descriptive Focus on how student solved problem, description of strategy or 
use of procedure 

198 20 

Conceptual Focus on evidence of understanding or misunderstanding of 
concepts underlying or connected to use of strategy.  

91 17 

Developmental Situating student work within developmental progression from 
additive to multiplicative reasoning or concrete to abstract 
thinking, drawing on both evidence of conceptual and procedural 
understanding 

6 3 

Levels of Instructional Response (N=243)   

General Not focused specifically on development of content or student 

strategy or student understanding 

90 19 

Procedural Focus is on helping students master procedure or strategy, or 

procedural fluency 

92 20 

Conceptual Some focus on developing deeper understanding of concepts, 

operation, or understanding behind procedure 

56 17 

Developmental 

 

Developing instructional responses that are based on analysis of 

student thinking and aim to move students towards more 

sophisticated strategies 

5 3 
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The participants in ours study worked closely with their students over the course of the school 

year and so it is not surprising that in making sense of the student work, they often brought in previous 

experience to inform their understanding of the evidence of student performance. Depending on the 

particular piece of student work they were looking at, teachers sometimes referenced working 

knowledge of the student from multiple categories and often not at all.  See Ebby & Sam (2015) for a 

more detailed description and analysis of the way teachers drew on working knowledge of students to 

arrive at an analysis. 

The four categories of analysis of student work represent increasing levels of depth, with 

general representing a superficial level, descriptive focusing on the work itself, and conceptual and 

developmental requiring the use of frameworks to make sense of the student work in relation to student 

learning. As illustrated by the examples in the next section, these levels of analysis are not mutually 

exclusive but rather most often they are cumulative. A teacher’s analysis of student work might remain 

at the general level or reflect both general and descriptive elements, or contain general, descriptive and 

conceptual elements.  

In Figure 1, we show the relative number of codes that were applied in each category for each 

teacher on the interview. Each row in the chart represents the codes applied to a single teacher 

interview. Because teachers may have discussed different numbers of samples of student work in the 

interview, we present these as percentages of the total number of codes that were applied in the 

interview. As Figure 1 shows, all 20 teachers in the sample drew on their working knowledge of the 

students to some degree and analyzed their student work at both general and descriptive levels.  There 

was variation, however, in the degree to which conceptual and developmental frameworks were utilized 

to make sense of the student work.  In the figure, the profiles are ordered in relation to the relative 

proportion of codes that went beyond descriptive (either conceptual or developmental). As the data 

shows, there is no direct relationship between the relative amount of working knowledge codes and the 
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depth of the analysis. Rather, we found that it was the different ways in which this working knowledge 

interacted with the evidence in the student work which was important for both the level of analysis and 

instructional responses (Ebby & Sam ,2015).   

 

Figure 1. Analysis of Student Work, Profiles by Teacher 

 

In the following sections, we illustrate each of these categories of levels of analysis of student 

work with examples from the interviews. Outside knowledge is not considered separately as it always 

occurred in conjunction with one of the other categories of analysis. It is also important to remember 

that these levels are cumulative rather than mutually exclusive:  the level of analysis indicates the 

greatest depth that was reached during the discussion of a particular piece of student work.  

0% 20% 40% 60% 80% 100%

Outside Knowledge
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Descriptive level
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Sorted by strategy 
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 General. The most superficial level of analysis was characterized by reference to non-

mathematical characteristics of the student work, format or correctness. Correctness was included in 

this category because it is the most immediate or obvious characteristic of the work that could be 

observed. Responses that were coded at this level did not contain any substantive analysis of work the 

student had done or strategy used to get to the answer. Often, as in the following example, teachers 

drew upon outside knowledge of the student along with observations about the format or the 

correctness of their answer. In this example, the teacher had first sorted her work into correct and 

incorrect and then within those created subcategories of students who showed their work and students 

who did not show their work. Here she describes a piece of student work that was judged to be 

incorrect.  

With this student who knows his multiplication but doesn’t always focus, I could see 

that started to draw the pictures, got sidetracked, drew some more pictures but never 

really, maybe looked at a friend’s paper. This doesn’t give me a clear picture as to what 

was going on in his head when he was at that point. . . . So yeah, this would be 

incorrect. This individual has some challenging behavioral issues. So I’m not surprised. 

It looked like he tried. He started to do something and then just got sidetracked. 

 

In her analysis of the strengths and weaknesses in the work, the teacher noted that the student had 

drawn pictures, but did not look to those pictures for any more information. When asked what she 

would do next with the student, she focused on his need for help: 

Maybe go back and give him some simple multiplication problems, some simple division 

problems because he, out of all these students you can see he clearly… there were a few 

that got it. You can see the mindset was there but he doesn’t have it and so giving him 

some extra work, working with him one on one, sitting down with him. 

 

Like the analysis, this instructional response also remained at a general level, giving the student easier 

division problems and one-on-one help. There was no diagnosis of what the student needed help with.  

 It is important to note that teacher’s analysis of student work rarely remained only at the 

general level and no teacher produced only general analyses across a set of student work. There were 
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also times when a more general analysis was warranted, for example when the student did not show 

enough work to draw any conclusions or the teacher could not make sense of the student work.  

 Descriptive. Teachers' comments about individual pieces of student work were considered 

descriptive when they included details that went beyond surface characteristics to focus on how the 

students solved the problem.  After sorting her work based on the number of correct answers on a page 

of 6 word problems, the following teacher focused on the pile of papers where the student had gotten 3 

problems out of 6 incorrect, noting that she was surprised to find one student in that pile because “she 

doesn’t really struggle with math.” She focused on a problem involving 6 groups of 93 where the student 

had used a building up additive strategy: 

 

 

Yeah, [she] doesn’t usually struggle with math but she can be careless so…I 

think she was probably… Yeah, she was doing something.  She gets easily 

frustrated too, so…  So it looks like she did 93, she did it 6 times. 

 

 

After noting that the student was adding 93 six times, the teacher did not go further to consider what 

this meant about the students’ understanding of multiplication. Rather, she focused her instructional 

response on the computational error and planned to introduce her to the standard algorithm 

So probably with her I’m going to focus on not being careless, and when you do do 

these strategies where you’re adding something up like six times it’s much easier to 

make a mistake because there’s so many things at play.  So I’ll probably try to sort of 

push her in the direction of the vertical strategy. And then also if you don’t have your 

basic multiplication facts memorized then it makes everything so much harder. 

 

In this case the descriptive analysis led to an instructional response focused on teaching the 

student a specific procedure and focusing on fact fluency, rather than recognizing and building on 

the fact that the student was understanding the multiplicative situation additively and beginning 

to group by larger amounts.  
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 In the next example, the teacher analyzed the array model that the student had used to multiply 

49 and 73 and recognized that the student was not using the model correctly to determine the four 

partial areas or products, but did not go beyond description to reflect on the implications for the 

student’s understanding of multiplication, place value or the distributive property: 

This is right, this is written correctly but they don’t seem to 

understand how to use kind of like the columns and the 

rows in order to figure out which factors to multiply in 

which part. And then here she seems to have gotten totally 

lost.  Like she knows she has to multiply different numbers 

at the 1s and the 10s from the two different numbers, but 

she seems to not understand where each part goes.  

 

Again this analysis of the student work remained at the procedural level—“which factors to multiply” 

and “where each part goes” rather than focusing on the conceptual underpinnings of the open area 

model for multiplication. She concluded, "This student seems very lost" and went on to say, "So this is a 

student I’d definitely pull out for re-teaching with my assistant or with me" (a general instructional 

response) but did not give any details about what she would be focusing on in this remediation. In this 

case, the descriptive and procedural focus of the analysis highlighted that the student was not using the 

procedure correctly, but did not illuminate any direction to go in to help the student develop a more 

powerful understanding of the array and how it represents multiplication.  

 Teachers' analyses of student work were most frequently at the descriptive level and the 

instructional responses developed from descriptive analyses were most often either at the general or 

procedural level. There were a few cases where the instructional response was conceptual, but were not 

connected to evidence in the work itself. (For example, one teacher concluded that a student needed to 

work on place value when the work did not show any place value errors).  

 Conceptual. When teachers went beyond description to analyze not only what the student did, 

but what they understood about multiplication, we categorized the analysis as conceptual. Most 
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conceptual analyses also contained descriptive and general elements but they were categorized as 

conceptual if there was some focus on student understanding. However, the depth of this analysis 

ranged from a general conceptual focus to more articulated analysis of the conceptual understanding 

evidenced in the student work.   

 For example, consider the following interpretation of a third grade student's solution to a 

partitive division problem in a Spanish immersion classroom (24 tennis balls in 8 containers). The 

student  partitioned the total amount into three equal groups by ones using hash marks but then wrote 

“each can has 8 balls” and divided 24 by 8 to get 8.   

. . . the strategy that she used is not showing me 

that she understands. So she has, I mean, she 

knows division but she doesn’t have the skill and I 

know that student so for sure I know. She has a 

concept of division but she’s not developed in the 

concept. She just knows the basics that you have to 

separate them in equal groups. She’s not using the 

rest of the strategies that we have been using in the 

classroom. So, and she makes those careless 

mistakes to let me know that she is inattentive as 

well. She’s not connecting the concepts.  

 

In this example, the teacher considers the disconnect between the strategies shown on the page along 

with what she knows already about the student to conclude that her understanding of "the concept of 

division" is not "developed." However, she does not identify more precisely what it is that the student 

understands or fails to understand in relation to division. Not surprisingly, the instructional response, 

while conceptual in nature, was also less specific:  "I guess drawing is fine but she’s below. [I would tell 

her] Use what you know. That is, [use] this part to respond to the question.” 

 In contrast, sometimes teachers were able to look at the student work and identify specific 

concepts that the student either understood or didn't understand, such as place value or properties of 

operations.  In the following example, part of which is shown below, the student had multiplied 253 and 
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46 incorrectly, recognized it was incorrect, tried to add 253 up 46 times, and then gave up. The teacher’s 

interpretation of this work is shown next to the image below: 

I don’t think he really understands what he’s doing. 

It’s that procedural thing and if you lose one step in 

the process or the procedure you can’t find your 

way back and I don’t think he knows what exactly 

he’s doing in this. I don’t think there’s any real 

evidence in place value awareness. 

 

 

The instructional response described by the teacher builds on this idea that the student has not 

developed an understanding of “place value awareness” in his use of the algorithm: 

I think what I might do with him is to kind of look, before we set this up look and see 

what we’re doing. We’re multiplying 200 by six and we’re multiplying 50, just to break it 

down so that he sees that what every one of these numbers has a value and it’s being 

multiplied by this and it’s going to be a big long addition problem and then work with 

this. Or maybe even just work with the, I think maybe the arrays with him. He likes 

things very organized, very boxed. So possibly that might be a way to pull him into this 

and then that’s a way to show things broken up for him. 

 

In this case, the teacher made a conceptual analysis of the students’ work and then used that analysis to 

formulate a response that focused on building conceptual understanding of an alternate procedure, 

namely partial products or “breaking up” the numbers. In this way, she was integrating conceptual and 

procedural aspects of multiplication.  

 Developmental. Only two teachers in the sample drew on their understanding of the 

developmental sequence or learning trajectory to make sense of their student work. Although these 

teachers stood out in our sample in that they had more significant professional development 

experiences in mathematics teaching and learning over the years, their approach to analyzing student 

work can offer important insights into more productive practices. We illustrate the confluence of sorting 
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strategy, analysis of student work and instructional response through two examples from one of these 

teachers.  

This teacher sorted her third grade student work based on strategies: whether the students 

used repeated addition, skip counting or knowledge of facts to determine the answer to two equal 

groups multiplication word problems. When she got to the following example, she was not sure whether 

to put it with her pile of repeated addition or the pile of skip counting: 

 
This one is interesting…  Well, they do 

repeated but then they’re doing a number 

line of the skip counting – 9, 18, 27, 36 

because I think they don’t know how to skip 

count automatically in their head so they’re 

using that number line to jump by 9s, jump 

by 12s. We’ve done number lines like in 

other units to add and subtract and but I 

haven’t showed them this way, like just to 

do repeated addition to skip count.  So I 

think he just feels comfortable using that 

number line to organize his thinking.  

 

 

 So I don’t know what pile I would put this in. I’m thinking he’s still using…  You know 

what, no, it is skip counting because he’s not adding 12 + 12 together, or 9 +9 + 9…  You 

know, I still don’t know.  I’m trying to think, he’s adding but he’s also putting the skip 

counting on the bottom.  I feel like he’s doing both.  I feel like he’s adding the number 

and as he gets to it he puts it down, but I don’t think he knows it automatically that it’s 

like 9, 18, 27, 36. 

 
As this teacher looked at what the student had put on the paper and reasoned it out, 

she thought carefully about whether that strategy represented additive thinking or the 

beginnings of multiplicative thinking or skip counting. Ultimately she determined that it was in 

between repeated addition and skip counting, reflecting an overall sense of the development 

from additive to multiplicative thinking. This level of analysis integrates both procedural and 
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conceptual elements to view learning as a process of developing more sophisticated strategies 

that are built on conceptual understanding.  

When she got to an example of the work she had sorted into the multiplicative pile, the teacher 

interpreted the student's strategy of breaking 8 x 12 up into (4 x 12) and (4 x 12) as evidence that she 

was beginning to understand the distributive property: 

This one looks like, she’s breaking up the 8.  She does 8 x 12 is 96 but then she’s thinking 

4 and 4, and I feel like this is the distributive property here – the 4 x 12 is 48 and then 

she’s doing 48 and 48 which leads to this too. And this is what, in Investigation 3 we’ll 

talk more about this with the distributive property and breaking that up to lead to that. 

Even though she got [a different problem] wrong here because it should be 72…  That’s 

where she’s made mistakes but I see her thinking here, but she got it right on this one. 

Even though the answer’s wrong, her thinking is getting there, it’s getting more efficient 

there.   

 

In addition, the teacher noticed that this understanding of the distributive property was reflected in her 

solution to another problem even though the answer was incorrect. Importantly, this teacher went 

beyond determining whether the student had mastered the skill of multiplying 8 x 12 to get the correct 

answer to think about what her strategy suggested about her underlying understanding of the 

properties of multiplication. She also recognized that the strategy of breaking up one factor is more 

efficient than the skip counting strategy that most of the students were using. This suggests a more 

sophisticated view of learning mathematics that has procedural, conceptual, and developmental 

elements, one that requires both understanding and valuing the concepts that are involved in 

multiplicative reasoning. 

 When it came to describing instructional responses, the teacher used her understanding of the 

developmental trajectory from counting to additive to multiplicative strategies to think about how she 

could use opportunities in the curriculum to help the students advance. In particular, knowing that the 

curriculum would shift from a focus on skip counting to the array model, she understood how this model 

could be used to help them progress in understanding and procedural fluency: 
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With the array cards I feel like those kids will break up the array.  So they might see an 

array of an 8 x 12 and if they know what a 4 x 12 is and then doubling that they’ll be able 

to see that array.  And I’ll have them share out too like when we talk about like arrays, 

when we do that game.  

 

In sum, teachers' analyses of student work represented different levels of depth that reflected 

an overall focus on procedural, conceptual and/or developmental frameworks. Teachers who made 

general or descriptive interpretations were focusing only on the work on the page. Teachers who made 

conceptual or developmental interpretations were drawing on frameworks of student understanding as 

well as the work on the page to make sense of their student work. These different levels of analysis have 

important implications for the kind of instructional responses that teachers generate after looking at 

their student work.  

 

Discussion 

 Our analysis of over 150 instances of teachers making sense of student work suggests that the 

process of looking at student work to inform instruction involves three interpretive activities: sorting, 

extracting relevant cues from the work on the page, and analyzing that evidence, and that these 

activities are influenced by the conceptual frames that teachers bring to the task. Three conceptual 

frames that emerged as being influential were (1) teachers beliefs about learning mathematics (e.g., 

whether learning was a process of mastery of skills versus a process of development, and whether that 

development includes conceptual as well as procedural aspects) (2) sorting mechanisms (e.g., 

correctness, proficiency or strategies) that are learned through experience and (3) working knowledge 

of students constructed from experiences with students across contexts and time.  These conceptual 

frames are often interrelated, for example if one views learning mathematics as a process of mastery 

one is more likely to sort student work based on correctness and may construct a profile of the student 

that revolves around the degree to which the student has mastered previous skills and concepts. If on 
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the other hand, a teacher views learning mathematics as process of development, she may be more 

likely to sort the student work based on strategy, look for evidence of both conceptual and procedural 

understanding, and view a student’s learning profile as malleable.   

 Figure 2 illustrates our emerging conceptualization of the way in which these conceptual frames 

shape the interpretive processes involved in looking at student work for instruction−in the way teachers 

extract cues from the evidence on the page, construct an analysis of the student work, and bring it all 

together to formulate and instructional response.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Interpretive Process of Looking at Student Work for Instruction 

 

Our analysis also demonstrates that the interpretation of student work can reflect different 

levels of depth of analysis, ranging from general or superficial, to descriptive, to conceptual to 

developmental. The few teachers that demonstrated a developmental approach to both analysis of 

student learning and instruction exhibited what Sztajn et al, (2012) define as learning trajectory based 
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instruction (LBTI) or ”teaching that uses learning trajectories as the basis for instructional decisions.” 

These teachers were able to identify both conceptual and procedural aspects in their student work to 

develop instructional responses that both built on student thinking and were directed towards deeper 

understanding and competency. An LTBI response emerges from the integration of procedural and 

conceptual analyses of student work into a developmental framework. Yet the vast majority of the 

teachers in our study described what students were doing (a procedural analysis) without considering 

either conceptual or developmental aspects of their strategies.  

 

Implications 

 The Common Core State Standards in mathematics (CCSSM) have substantially increased 

expectations for both students and teachers. The CCSSM reflect a balance of conceptual and procedural 

skills, as well as a developmental perspective. As stated in the introduction, “the development of the 

standards began with research-based learning progressions detailing what is known today about how 

students’ mathematical knowledge, skill, and understanding develop over time” (Common Core State 

Standards Initiative, 2010, p. 4). This focus on balancing conceptual and procedural understanding and 

learning trajectories places new demands on teaching, as teachers must not only understand the 

mathematical ideas and skills embodied in the Standards, but also assess where students are in the 

trajectory of learning those concepts and skills, and then use that information to design and enact 

instructional responses that support students’ movement along that trajectory. In other words, teachers 

must be able to implement formative assessment processes based on, and supportive of, the 

development of student thinking.  

Looking at student work and using data to inform instruction are common practices in schools 

and professional development experiences in mathematics, yet we know little about how to make these 

processes most effective. Our findings highlight both more and less productive ways that teachers think 
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about evidence of student thinking and how instructional responses are related to differences in depth 

of the interpretation of student work.  In particular, our work illustrates the limits of general and 

descriptive analyses of student work in generating substantive instructional responses for students that 

are based on their mathematical thinking.  

 Our work also highlights the importance of conceptual frames to the process of making sense of 

evidence and data use. Understanding the analysis of student work as an interpretive process raises 

some important issues for professional development and the improvement of practice. First, how can 

we support teachers to move from descriptive analyses of student work to incorporate conceptual 

analyses and a learning trajectory framework? Having teachers learn to sort student work by strategy 

rather than by correctness seems to be a promising direction, but teachers will also need new 

conceptual frames to help interpret that work.  We hypothesize that if new frames were introduced, 

such as those exemplified by learning trajectories, teachers could incorporate those frames and focus on 

the strategies that students are using to better inform and enhance their working knowledge of the 

students rather than drawing primarily on their existing working knowledge to interpret the work on the 

page. But will introducing a learning trajectory framework for analysis of student work be sufficient? 

What kinds of knowledge and skills do teachers need to be able to construct learning trajectory 

responses, not only in their planned responses but in their actual classroom practices?  

 If teachers have no alternative frames through which to look at student work other than a view 

of learning math as a process of mastery along their working knowledge of the student and a procedural 

understanding of mathematics, then they are unlikely to be able to effectively draw on the evidence of 

student thinking in the student work to construct analyses and instructional responses that could move 

students forward in both depth of understanding and sophistication of strategy use. The deeper levels of 

analysis, which led to more substantive instructional implications, involve the use of conceptual 

frameworks that reflect learning as a constructive process and therefore are in conflict with a 



25 
 

correctness sorting strategy or a view of learning as mastery. Yet many ubiquitous practices in schools 

that teachers are expected to participate in−grading or "correcting" student work, using results of 

standardized testing to make decisions, writing behavioral objectives in lesson plans, "covering" the 

curriculum−reflect a view of learning as mastery.  When teachers shift to a developmental view of 

learning to look at student work, how do they make sense of and negotiate these different frameworks 

in their daily practice?  
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