I nteractive Student Notebooks

Chae Coan
Barton Junior High School
El Dorado, AR
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

I ntroduction

- Background
> B.S.E. in Secondary Mathematics from Arkansas
State University, 1993
> Arkansas licensure
- 7-12 Mathematics
- 5-6 Endorsement
- Teaching experience
> 23 years, spanning preschool through $12^{\text {th }}$ grade
- Primary focus: $7^{\text {th }}$ through $10^{\text {th }}$ grades
- Honors
> Mathematical Association of America
- Arkansas Middle Level Mathematics Teacher of the Year, 2015
> Featured in Dr. Nicki Newton's video about Interactive Student Notebooks

Discovering the Interactive Student Notebook

- Marshall's Pre-AP Chemistry ISN
> What a great way to organize everything!
- It's all taped and glued together so nothing gets lost!
$>$ Could I do this for math?!?
> What did you call this thing again?
- I think this COULD be applied to a math class!
> I have just invented something NEW!
- Little did I know..
> Summer of research
- Pinterest
- Teachers Pay Teachers

Setting Up the ISN

- Almost everything you find about the ISN suggests the Left Side/Right Side approach. $>$ Right Side is for teacher input (instruction)
$>$ Left Side is for student reflection (processing, analysis, and synthesis)
- The Left Side/Right Side method did not work for me.
> In theory, it makes sense. In reality, I did not have enough class time for that much reflection

Setting Up the ISN (Cont.)

\qquad

- Table of Contents
> Every page or only chapters?
- First I tried every page, the most common method
- The next year I changed to listing only the chapters.

Listing the title on both the Contents and the page itself seemed redundant to me. - Time is too valuable for this.
> Dates

- List the date each chapter is started.
- Page numbers
> Take time to have students number every page in the notebook.

\qquad
\qquad
\qquad
\qquad
\qquad

Pre-AP Algebra 1 Table of Contents

each chapter is written in a different color. The "I can..." statements within each chapter are written in the same color as the chapter title. \qquad
\qquad

What is an "I can..." statement?

- An "I can..." statement is a learning objective written in student-friendly language.
> Standards and objectives are written for teachers and administrators, not students.
> "I can..." statements tell students exactly what will be learned and they say it in language students can understand.
- "I can..." statements are written at the top of every left side page in the ISN.
- Example:
> I can solve two-step equations.

An "I can..." statement from chapter 6

To Grade or Not to Grade?

- Some teachers grade ISN's, others do not.
$>$ Collect notebooks periodically and grade entire section
> Grade selected activities as they are done.
$>$ Don't grade any of the notebook.
- I grade selected foldables/worksheets as they are done.
> Sometimes I give completion/participation grades for foldables or notes.
> Sometimes I take accuracy grades, like a small quiz.

Quiz Grade in ISN
The instructions were to reflect on what you have learned about theoretical and experimental probability and create a mind map showing to compare and contrast the two.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Goes in the ISN?

\qquad

- Foldables
> When I started I spent a small fortune on Teachers Pay Teachers.
> Once I got the hang of it, I started making my own foldables.
- A few of my items are for sale on Teachers Pay Teachers. I hope to add to the selection next summer.
$>$ I try to put foldables on left side pages only, but sometimes I end up with them on both sides.

When taking notes directly in the notebook, I always use the right side because it is easier to write on paper that doesn't already have lumpy glue or staples on the other side.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Notes
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Proving the Pythagorean Theorem
A visual and geometric proof

Transformations Foldable
The hexagon really slides by way of the paperclip. The triangle really flips by way of a piece of tape along the left side. The pentagon really spins by way of the brad. Sadly, no magic paper to make the square really enlarge.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Angles of Polygons
The measure of an exterior angle of a triangle is equal to the sum of the two
remote interior angles.
The sum of the exterior angles of a polygon is equal to 360 degrees.

Thank you for coming today!

- Contact Information
> Chae Coan
> ccoan@esd-15.org
- Visit my Teachers Pay Teachers store at www.teacherspayteachers.com/Store/Chae-Coan
- Some of my favorite TPT sellers
> Algebra4All
$>$ Math Giraffe
> All Things Algebra
> MissMathDork
> 4mulaFun
> Activities by Jill
- Another great foldables resource > http://bit.ly/1ysefRj
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ordering Fraction, Percent, Decimal

Equivalent Expreasions

 cut \& Paste ActivityBy: Coae Coan

Cut apart the small squares that contain fractions, decimals, and percents.
Match the equivalent expressions.
Put the groups in order from least to greatest.
Glue onto the sheet in order.

The activity was designed to be printed on legal size paper. If you choose to print on letter size paper, be aware that the pieces will be quite small.

Thank you for purchasing this activity!

75%	$\frac{3}{4}$	$\frac{1}{3}$	$\frac{3}{10}$	0.3	25%	0.4	0.25	100%	0.27	0.75	$66 \frac{2}{3} \%$	12.5%	40%
$\frac{1}{4}$	4%	0.5%	0.04	$\frac{1}{100}$	$\frac{2}{3}$	0	30%	5%	$\frac{27}{100}$	0.05	$33 \frac{1}{3} \%$	$\frac{2}{5}$	$0 . \overline{3}$
27%	1%	$\frac{1}{1}$	0.01	$\frac{1}{20}$	$\frac{1}{8}$	0.125	$\frac{1}{25}$	$\frac{1}{200}$	0.005	$0 . \overline{6}$	0%	0.0	1.0

Solving Absolute Value Equations
Cut on the dotted lines. Fold each vertex of the large square in to meet at the center with the printing on the outside.

When comparing two fractions, you need a \qquad .
Then, just compare the \qquad -.

$-\frac{7}{4} \square_{-\frac{5}{9}}$

A can be a very useful tool when comparing a fraction to a decimal.

Comparing decimals requires you to \qquad the decimal points. If you need to, use zeros as place holders.

