

An Instructional Framework

Tier 2 Mathematics Intervention

Key Instructional Practices:

1) Real world problems
2) Strategy instruction
3) CRA sequence
4) Peer assisted learning
5) Progress monitoring
6) Explicit Vocabulary Instruction

Extended Instructional Time

Focused on:

Assessing strengths and weaknesses
Designing Accommodations and Adaptations
Gap Closing Instruction

Indicators of MLD:

1) Fluency with basic calculation
2) Judgment of magnitude
3) Use of multiple representations
4) Procedural memory
5) Visual-spatial skills

CORE INSTRUCTION

Standards for Mathematical Practice

Subtypes of Mathematics Learning Disabilities

	Procedural	Semantic	Visuospatial
Characteristics	- Difficulty with execution of procedures - Developmentally immature strategies - Do not comprehend the numeric symbol system - Cannot covert symbols to meaning	- Affects ability to count and calculate - Weakness in verbal code - Cannot retrieve words associated with symbols - Cannot match word from of numbers to symbols - Does not improve over time	- Cannot decipher magnitude representations - Difficulty spatially representing mathematical information - Lack an "internal number line"
Struggles in Classroom	- Reading numbers aloud - Writing numbers from dictation - Converting a story problem to an equation - Recalling sequence of steps to an algorithm	- Generate symbols for words - Writing numbers from dictation - Converting a story problem to an equation - May also struggle with sound to symbol pairing in reading	- Determining which number is larger - May reverse a clock, number line or 4 coordinate grid - Converting an equation to a different form: Example: $9 \times 4=(10 \times 4)$ -4 - Unreasonable answers Example: $2 \times 4=24$ - Estimation - Making a visual model independently
Strengths in Classroom	- Determine magnitude - Recall basic facts - Read - Learn mathematics through language and visual models	- Determine magnitude - Understand mathematical concepts and vocabulary - Learn mathematics through use of visual models	- Convert between language and symbols - Interpret a story problem - Recall basic facts - Understand mathematical concepts and vocabulary - Learn mathematics through language and visual aids

Source: Geary, D.C. (2004)

Top 10 Learning Supports

1) Preteaching/Reteaching
2) Visual Aids
3) Visual Models
4) Cue Cards
5) Strategy Cards
6) Color Coded Procedures
7) Error Analysis
8) Schema Diagrams
9) Make it Simpler
10) Peer Assisted Learning

Explicit Vocabulary Instruction

1) Interactive Notebooks
2) Foldables
3) Cue Cards
4) Anchor Charts
5) Graphic Organizers

Websites:

http://www.graniteschools.org/mathvocabulary/
http://www.graniteschools.org/mathvocabulary/vocabularycards/
http://www.k-5mathteachingresources.com/Math-AnchorCharts.html
Dinah Zike Foldable Books: www.dinah.com
www.creativemathematics.com

Suggested Accommodations by Type of Difficulty

Fluency With Basic Calculation	Judgment of Magnitude	Use of Multiple Representations	Procedural Memory	Visual Spatial Skills
- Visual aids for calculation of basic facts such as 100's charts, number lines, counters, fact charts - Calculator - Take time factor off of basic fact assessments - Strategy notebook draw models of strategies such as counting on or double and double again. - Card ring of tricky facts they can't remember - Use assessments to identify which facts student can recall or reason through quickly and which they consistently struggle with. Base visual aids on strengths and weaknesses.	- Models notebook or cards to use as reference when solving problems (tree diagram, area model, open number line, arrow math) - Use visual models to draw problems. - Manipulatives - Use problems with smaller numbers students can be successful with. - Check with a buddy explain in words how the problem was solved - does my answer make sense? - Identify errors in the work of others - find the answer that doesn't make sense. - Use measuring activities to develop this area of weakness.	- Models notebook or card (tree diagram, area model, open number line, arrow math) - Use visual models to draw the problem. - Manipulatives - Use problems with smaller numbers students can be successful with. - Check with a buddy explain in words how the problem was solved - - Cards or charts to connect words to symbols to models - Make a story to go with symbolic equations.	- Cue cards for multi step procedures - Personal math notebook for procedures to remember - Sample problem for student to use as a guide - Have the student talk through the procedure before doing independently - Use visual models to draw the problem before solving. - Work with a buddy - Prompting - Use color coding for different parts of problem such as red for step 1, blue for step 2	- Turn lined paper sideways - Use graph paper - Do not ask student to copy problems off of the board - copy for them or print out problems - Prompt student when models are not drawn proportionally - Use color coding for different parts of problem such as red for ones place, blue for tens, etc - Computer assisted instruction so student can reduce need to write problems - Cue cards to remember directionality such as a clock, place value order, positive/negative quadrants

©Catherine Beals, Ed D 2015
cbeals@kunaschools.org

