Calendar Time Discoveries in Number Sense through the CRA Model

Rachael Betscha
Julia Garcia
Cristina Smith
betschr@martin.k12.fl.us garciai1@martin.k12.fl.us smithc1@martin.k1 2.fl.us

@RayWithanay
@cristinavsmith

Purpose

- To build an understanding of foundational early number concepts
- To build an understanding of the Concrete, Representational, Abstract sequence
- To practice calendar-based activities designed to support learning of early number concepts
- Raffle!!

Getting to Know Each Other

- What work do we do?
- Classroom teacher
- Instructional coach
- Administrator
- District personnel
- Is calendar time part of your math instruction?
- How mathematically meaningful is calendar time in your classroom? Why?

Traditional Calendar Time

- In 2009, the National Research Council stated that, "using the calendar does not emphasize foundational mathematics".

Economic Background

\square Economically Disadvantaged

- Non-

Economically
Disadvantaged

Language Background

- English Language Learners
 - Native English Speakers

School Readiness

Florida Kindergarten Readiness Screener

$\boxed{\square}$ Language \& Literacy Math

New Weekly Videos - Click Here to Subscribe

Math Conversations

The Math in Calendar Time

- Foundational Mathematics Content in Number for Early Learners
- According to the National Research Council's Committee on Early Childhood Mathematics, there are three core areas of foundational mathematics content in number for early learners.
- Number
- Relations
- Operations

Concrete, Representational, and Abstracł

- Based on Bruner's reasoning theory
- Concrete-using manipulatives
- Representational-using drawings or pictures
- Abstract-using numerals or mentally solving problems

Number:

Quantity, Counting, and Knowing How Many

- Verbal counting
- Standard list of counting words in order
- One-to-one correspondence between counting sequence and objects
- Cardinality
- Last word count identifies the amount in the set
- Ordinality
- Each number is one more than the previous number; the new quantity is embedded in the previous
- Concept of Zero
- Count of zero indicates nothing in set
- Counting on and counting back
- Counting forward and back within the number sequence from any given number

A Student Calendar

Number: Activities to Build Understanding in the Concrete, Representational, and Abstract

Counting with number paths

Counting with number lines

- We already have 18 beads because yesterday was November $18^{\text {th }}$.
- If I gave you one more bead, how many beads would you have?

Number: Activities to Build Understanding in the Concrete, Representational, and Abstract

Building a ten

- Make the number 18 on your ten frames.
- How did you make 18 ?

Number \& Relations: Activities to Build Understanding in the Concrete, Representational, and Abstract

Fluency through five

- How many do you have colored in?

- How many more do you need to make 5 ?

Relations:
Building Relationships Between Numbers 1 Through 10, and 10 Through 20

- 4 types of number relationships that children can and should develop
- One and two more, one and two less
- Anchors, or "benchmarks" of 5 and 10
- Part-part-whole relationships
- Spatial Relationships
- Pre-place-value concepts with numbers 10-20

Relations: Activities to Build Understanding in the Concrete, Representational, and Abstract

Building a ten

- Make 15 using your tens frames and beads.
- How many more do you need to make another 10 ?
- How did you figure that out?

Make a ten using your pipe cleaners and beads.

Operations:
Developing Meaning with Addition and Subtraction

- Teaching students to see mathematical situations in their day-to-day life using calendar.
- Proper sequencing to support students full grasp of the meaning of operations is very important: Result unknown problems are the easiest, progressing to change unknown problems and then to start unknown problems

Operations: Activities to Build Meaning in the Concrete, Representational, and Abstract

Story problems about the calendar

- Join Change Unknown:

Today is November 19 ${ }^{\text {th }}$, we know that Thanksgiving is on November $26^{\text {th }}$.
How many days do we have until
Thanksgiving?

$$
19+\ldots=26
$$

How would you solve this problem?

Operations: Activities to Build Meaning in the Concrete, Representational, and Abstract

Hundreds chart counting

- Join Change Unknown:

We have been in school for 46 days. How many days until we have a party on the $100^{\text {th }}$ day of school?

- How would you solve this problem?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Showcasing Student Thinking

$$
7+10=17
$$

$9+8=17$

Making If Work

In Closing

- Making numbers real
- Using the calendar to build early numeracy concepts allows for immediate real-world application
- It's two more day's until Juana's birthday!
- Reflect:
- What activities do you currently use to reinforce early number concepts?
- How can you include additional activities to reinforce early number concepts and make math more meaningful?

Activity Sheet

Number Sense Calendar Activities

Activity	What it looks like in the...			MAFS and associated questions			Related SMPs
	Concrete	Representational	Abstract	Kindergarten	1 ${ }^{\text {at }}$ Grade	$2^{\text {nd }}$ Grade	
Building a ten Number Relations	Students put beads on ten frame to represent day. On days when a ten is made, beads go on pipe cleaner. Example:	Students color in ten frame to represent day of month. Example:		OA. 1.3 (Look at incomplete ten frame to see how students arranged the beads) How did you make the number \qquad today? OA. 1.4 How many more do you need to make 10 ? NBT.1.1, CC. 2.5 How many doyou have? (Ex: 25 as 20 and 5)	OA. 3.6 (Look at incomplete ten frame to see how students arranged the beads) How did you make the number \qquad today?	NBT.1.1 (Student builds number with ten rods and blocks/beads and pipe cleaners) How many do you have? (Frompt student to count by tens and ones.)	$\begin{aligned} & 1,2,3,4, \\ & 5,7,8 \end{aligned}$
Writing in days on calendar Number	See ten frame with beads activity in the concrete.	See Building a ten activity in the representational.	Write in date. Modification: Students trace numbers. K picture $2^{\text {n4 }}$ picture November 	CC. 1.3 How do we write ? \qquad	$\begin{aligned} & \text { NBT_1.1 } \\ & \text { How do we write___? } \end{aligned}$	NBT. 1.3 What would the number__look like using base-ten numerals? Using number names? Using expanded form? (Students write date on calendar)	2, 7,8

Resources

ELEMENTARY $Y_{\text {No }}$ MIDDLE SCHOOL
THEMATICS
Teaching Developmentally

mathcoachscorner.com mathematicallyminded.com

Contact Information

- Rachael Betscha
- Julia Garcia
- Cristina Smith
betschr@martin.k12.fl.us
garciai1@martin.k12.fl.us
smithc 1 @martin.k1 2.fl.us
@RayWithanay
@cristinavsmith

