Magical Makeover! Strategies for Content Rigor, Relevance, Richness Burst Session 136 Thursday April 14 11:30-12:00 Golden Gate C2, Marriott @normabgordon @CueThink

N April 13-16• San Francisco

BIG QUESTION

What raises the rigor, relevance and richness of application problems in math classrooms?

JARGON

Rigorous, relevant and rich content (or math problems)
$($ http://www.sciencegeek.net/lingo.html $) ~ \rightarrow$
"We will aggregate hands-on problem-solving across cognitive and affective domains."
"We will deploy intuitive systems in authentic, realworld scenarios."
"We will deliver innovative enduring understandings via self-reflection."

NOT JARGON

Multiple entry points
Multiple pathways
Opportunity for conflict, argument, critiquing
"constructive controversy" (@ddmeyer, \#NCSM16)

WHEN LEARNING IS HAPPENING STUDENTS ARE...

Questioning	Demonstrating	Persisting
Listening	Organizing	Concentrating
Discussing	Assessing	Watching
Justifying	Relating	Risking
Reasoning	Remembering	Engaging
Visualizing	Reviewing	Puzzling
Imagining	Practicing	Collaborating
Reflecting	Explaining	Patterning
Analyzing	Inventing	Checking
Experimenting	Hypothesizing	Refining
Testing	Articulating	Proving
Evaluating	Applying	Predicting

WHEN LEARNING IS HAPPENING STUDENTS ARE...

Questioning
 Listening

Discussing

Justifying
Reasoning

Visualizing
Imagining
Reflecting

Analyzing

Organizing
Assessing

Remembering

Reviewing
Practicing
Explaining

Concentrating

Watching

Relating

Risking
Engaging

Puzzling

Collaborating
Patterning

Inventing

Experimenting

Predicting

01 Make sense \mathcal{G} persevere

05 Use appropriate tools strategically

02 Reason abstractly \& quantitatively

06 Attend to precision

03 Construct arguments \& critique

07 Look for and make use of structure

04 Model with mathematics

08 Use repeated reasoning

MATHEMATICS TEACHING PRACTICES

MATHEMATICS TEACHING PRACTICES

FOCUS LENS FOR THIS BURST

NCTM EDITORIAL

Learning experiences that

Experiences that

involve rigor ... do not involve rigor ...
require effort and tenacity by students
are more "difficult," with no purpose (for example, adding 7ths and 15ths without a real context)
require effort and tenacity by students

fous on quality (icin task)	fous on quantily
indulde enty points and exensions forla students	are ffered ony to gifted stuents
are not always tidy, and can have multiple paths to possible solutions	are scipied, with neat path to asol

contain routine procedures with little relevance
develop strategic and flexible thinking
encourage reasoning and sense making

ACHIEVE THE CORE: RIGOR

In major topics pursue:
conceptual
understanding,
procedural skill and
fluency, and application with equal intensity.

Conceptual understanding
Students must be able to acces concepts
from a number of perspectives so that
they are able to see math as more than a set of mnemonics or discrete procedures.

Application

Students use math flexibly for applications in problem-solving contexts.

FOCUS LENS FOR THIS BURST

REFLECTION QUESTIONS

Does the problem
O have important useful mathematics embedded in it?
© foster higher level thinking, problem solving and mathematical reasoning?

O invite a productive struggle using different or multiple strategies and representations?

- encourage students to consider "what if?"

O provide avenues for tiered modifications without compromising the mathematical learning objective(s)?

CUETHINK CRITERIA

O Provides an opportunity to articulate routine and non-routine problem solving processes; in many instances the actual "question" could be open-ended allowing for multiple solutions.

Q Provides opportunity for extension or modifications for accessibility without compromising the mathematical learning objective.

O Is relevant and interesting to students.
$\square_{\text {Is aligned to the Common Core State Standards. }}$

MAKEOVER PRACTICE

BEFORE

Cleo wants to make
guacamole dip for a party
she is going to. Mike will be
at the party too. Avocados
(needed to make
guacamole) are on sale for
$\$ 0.85$ and Cleo has \$11.25.
How many avocados will
she be able to buy?

EMPOWERMENT - create opportunity for all to engage

BEFORE

Cleo wants to make guacamole dip for a party she is going to. Mike will be at the party too. Avocados (needed to make guacamole) are on sale for $\$ 0.85$ and Cleo has $\$ 11.25$. How many avocados will she be able to buy?

AFTER
QUESTION
Cleo wants to make guacamole dip for a party she is going to.

Avocados (needed to make guacamole) are on sale for $\$ 0.85$ and Cleo has \$11.25.

EMPOWERMENT - create opportunity for all to engage

BEFORE

Cleo wants to make guacamole dip for a party she is going to. Mike will be at the party too. Avocados (needed to make guacamole) are on sale for $\$ 0.85$ and Cleo has $\$ 11.25$. How many avocados will she be able to buy?

AFTER

Cleo needs avocados to make guacamole for a party. Avocados are on sale. How many avocados can she buy?

RIGOR and INQUIRY

AFTER

Here are two story problems. Explain how you can use your answer to EITHER one to answer the other.

- Cleo needs avocados to make guacamole for a party. Avocados are on sale for $\$ 0.85$ and Cleo has $\$ 11.25$;o spend. How many avocados can she buy?
- Mike's class raised $\$ 112.50$ for an afternoon at the movies. Tickets are $\$ 8.50$. How many ticket can the class purchase?

RIGOR and INQUIRY ...

What is the relationship between the digits in this number?
(e.g. 777, etc.)

How would adding a 0 to the end of a number affect the value of the digits? (e.g. 75 becoming 750)

How do you think place value connects to other math operations? (e.g. explore the relationship between place value and multiplication/division)

Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.

RIGOR and INQUIRY

What is the relationship between
 the digits in this number? (e.g. 777, etc.)

How would
adding a o to the end of a number Aff Ct the value of the digits? (e.g. 75 becoming 750)

How do you think paeanaue connects to other math operations?

MAD LIBS (?)

What is the relationship between \qquad and \qquad ?

How would [operation] affect the value of \qquad ?
How do you think \qquad connects to other math operations?
Why does \qquad of \qquad have \qquad ?
Why does the \qquad have \qquad ?

Using what you know about \qquad what is the

YOUR TURN!

BIRTHDAY CAKE

BEFORE

Seb is making a round cake for his sister Gabby. He has
used 6 sugar roses for decoration. In between
each two roses, he has put three candles. How old is

Gabby?

BIRTHDAY CAKE

BEFORE

Seb is making a round cake for his sister Gabby. He has
used 6 sugar roses for decoration. In between each two roses, he has put three candles. How old is

Gabby?

INQUIRY AND RIGOR

Seb is making a round cake for his sister Gabby. He has used 6 sugar roses for decoration. In between each pair of roses, he has put three candles. Hownendicabay?

Challenge: Can Seb use this same pattern for her cake next year? Be sure to show or explain why or why not?
(FILL IN THE blanks)

WORKSHOP PARTICIPANT SAMPLES (NCSM16)

Gabby is turning 6. How could her brother decorate the cake to celebrate her?

Seb is making a round cake for his sister Gabby. He used sugar roses for decoration. In between each two roses, he placed some candles. How old is Gabby?

See is making a round cake for his sister Gabby. He has used 6 sugar rises for decoration. In between each two roses, he has put three candles.

PIZZA

BEFORE

Mack ate 25 of his pizza and Justin ate 0.50 of his pizza. Mack says that he ate more pizza than Justin.
Explain. Show your thinking by creating a model or representation.

PIZZA

BEFORE

Mack ate .25 of his pizza and Justin ate 0.50 of his pizza. Mack says that he ate more pizza than Justin. Explain. Show your thinking by creating a model or representation.

AFTER

Mack ate .25 of his pizza and Justin ate 0.50 of his pizza. Mack says that he ate more pizza than Justin. Do you agree with Mack? Explain why or why not. Show your thinking by creating a model or representation.

WORKSHOP PARTICIPANT SAMPLES (NCSM16)

Mack and Justin both ate some of a pizza. Mack says he ate more pizza than Justin. What are some of the amounts each of the boys could have eaten if Mack was correct?

Use a sentence frame: Mack ate $1 / 2$ of his pizza and Justin ate $1 / 4$ of his pizza. Mack says he ate more pizza than Justin. Convince me that Mack is wrong. Show your thinking by creating a model or representation.

SNOW CONES

BEFORE

Omar has a snow cone
machine. It takes $2 / 3$ of a
cup of ice to make a snow
cone. How many full snow
cones can Omar make with
4 cups of ice?

SNOW CONES

BEFORE

Omar has a snow cone machine. It takes $2 / 3$ of a cup of ice to make a snow cone. How many full snow cones can Omar make with 4 cups of ice?

AFTER

Omar has a snow cone machine and 5 cups of ice. It takes $2 / 3$ of a cup of ice to make a snow cone. He wants to make enough snow cones for himself and 7 friends.

WORKSHOP PARTICIPANT SAMPLES (NCSM16)

Take out the " 4 cups" to be more open-ended
Omar has a snow cone machine. It takes $2 / 3$ of a cup of ice to make a snow cone. Omar has 4 cups of ice.

For access (empowerment): Take out the numbers. Omar has a snow cone machine. It takes \qquad cup(s) of ice to make a snow cone. How many full snow cones can Omar make with \qquad cups of ice?

JUMP ROPES

BEFORE

Sally has 30.25 meters of
rope. She wants to cut it
into 5 equal pieces to make
jump ropes for 5 students.
How long will each jump
rope be?

JUMP ROPES

BEFORE

Sally has 30.25 meters of rope. She wants to cut it into 5 equal pieces to make jump ropes for 5 students. How long will each jump rope be?

AFTER

Sally has 12.25 meters of rope. She wants to make 5 jump ropes that she and her friends can use at recess. Jump ropes are only fun to use if they are the right length. According to the PE teacher at Sally's school, "the jump rope should be 1.6 times as long as the jumper." If Sally's tallest friend is 5 feet and two inches tall.
What should Sally do?

WORKSHOP PARTICIPANT SAMPLES (NCSM16)

She has 30.25 meters of rope. How can she divide this to create multiple jump ropes?
Sally has some rope. She wants to cut it into equal pieces to make jump ropes for some of her friends.
Remove some of the numbers: Sally has __ feet of rope. She wants to cut it into 5 equal pieces for ___ students. How long will each jump rope be?

BALLET CLASS

BEFORE

Clara enjoys ballet class
How many minutes did Clara spend the entire month?

Show the answer in minutes and convert it to hours.

BALLET CLASS

BEFORE

Clara enjoys ballet class
How many minutes did Clara spend the entire month?

Show the answer in minutes and convert it to hours.

AFTER

Clara enjoys ballet class.
How much time did Clara
spend practicing ballet last month?

Choose the best units for your answer and convince me why your units make the most sense.

WORKSHOP PARTICIPANT SAMPLES (NCSM16)

Clara spent 1080 min practicing ballet over the course of 15 days. Make a list of times she could have practiced each of those days.

BASEBALL

BEFORE

When a baseball is thrown or hit into the air, its height in feet after t seconds can be modeled by \{equation\} where \{variable\} is the initial vertical velocity of the ball in feet per second and \{other variable\} is the ball's initial height. A player throws the ball home from a height of \{some number\} ft with an initial vertical velocity of \{some number\} ft/s.

The ball is caught at home plate at a height of \{some number\} ft. \{some number\} seconds before the ball is thrown, a runner on third base starts toward home plate at an average speed of \{some number\} ft/s.

Does the runner reach home plate before the ball does? Explain.

EMPOWERMENT = LESS IS MORE

AFTER

The ball is caught at home plate.
Before the ball is thrown, a runner on third base starts toward home plate.
Does the runner reach home plate before the ball does?

Information:

Baseball motion model: \{equation\}, \{variable\}, \{other variable\}
A player throws the ball home from a height of \{some number\} ft with an initial vertical velocity of \{some number\} ft/s.
The ball is caught at home plate at a height of \{some number\} ft.
\{some number\} seconds before the ball is thrown, a runner on third base starts toward home plate at an average speed of \{some number\} ft/s.

PARTING THOUGHTS

...the cumulative effect of students' experience with instructional tasks is students' implicit development of ideas about the nature of mathematics-about whether mathematics is something they personally can make sense of, and how long and how hard they should have to work to do so.

Stein, Smith, Henningsen, \& Silver, 2000

Funded by The National Science Foundation, CueThink is an innovative application focused on improving critical thinking skills and math communication of students in grades 2-12. Our mission is to empower students to see challenges as opportunities.

REFERENCES

- NCTM research brief
- NRICH article
- Achieve The Core: bit.ly/Achieve_Rigor
- "Selecting and Creating Mathematical Tasks; From Research to Practice." Stein and Smith Mathematics Teaching in the Middle School 3 (February 1998); 344-50

CueThink

- www.CueThink.com
- Meet the CueThink team at NCTM 2016! BOOTH \#1333

