Motivating the Unmotivated: Access to Learning

Barbara J. Dougherty, University of Missouri barbdougherty32@icloud.com Lisa Bendall, Sigsbee Charter School Lisa.bendall@sigsbee.org

Focus of Session

- Characteristics of students that are unmotivated
- Tasks to motivate engagement
- Discussion techniques
- Questioning strategies
- Question and answer/closure

Why are students unmotivated?

3-Tiered Support Model

Struggling Students in Mathematics

- Students who struggle with mathematics often
 - use procedures that younger, typically achieving students use;
 - make frequent errors when executing procedures; and
 - have a poor understanding of concepts that are foundational to performing procedures (Geary, 2004)
- Additionally, they are often
 - Dependent upon the teacher
 - Quick to give up
 - Frustrated by 'word' problems (Dougherty & Foegen, 2011)

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

FIND A PLACE

(2 Players)

Use 40 cards numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (four of each).

Player A

Bowl-A-Fact

· A man

Tasks to Motivate

- High interest
- Require some collaboration or cooperation
- Incorporates significant mathematical ideas

Kahoot

Teacher View

Student View

Questions to consider:

- Why are you creating the Kahoot?
- What is your anticipated outcome?
- What knowledge of the concept do your learners already have mastered?
- What steps will be taken to ensure success for all levels of learners?
- Do you need to build in extra time for discussion, debate or other activities between questions?
- Are you intending to open it up to the public? How would you utilize the Kahoot to its fullest potential?

Instructional Techniques

Consider your use of homework:

- What is the purpose of homework that you assign?
- How do you manage homework on the day it is due?

Discussion Structure: Expert Groups

- Benefits
 - All students must talk
 - Students have to analyze work
 - They feel confident about the problem they are responsible for

- Number off in the group
- Problem assigned to each number
- Meet as an expert group
- Come back to original group to share

Discussion Structure: Collaborative Groups

- Groups select a problem
- Meet as a group to decide on a solution(s) and method
- Presenter chosen randomly
- Present to class

Student Created Rubric

Presentation Rubric: 6th Grade

Group:
Presentation Criteria
Talks confidently about his/her group's perspective
Makes eye contact with the audience
Answers/addresses audience with respect
Has organized the work and the presentation and it is legible
Lets others in audience give ideas or ask questions
Uses appropriate voice volume with good enunciation
Actively listens to others
Has a positive attitude toward the presentation and work presented
Presentation section worth 2 points: Must have at least 5 checked and non-negotiable for 2 points; 3 or 4—1 point
Mathematics Criteria
Uses appropriate mathematical vocabulary
Gives supporting evidence for answer or process—describes and shows thinking
Answers and anticipates questions peers may ask
Shows multiple methods or answers as appropriate
Revises any incorrect or inaccurate solutions or solution methods
Accurate mathematics

Mathematics section worth 3 points: Must have 4 or more checked and non-negotiable for 3 points; 3–2 points; 2–1 point.

Total Score _____ out of 5 points

Discussion Structure: Poster Session and Gallery Walk/Carousel

Discussion Structures

- Expert groups
- Collaborative groups
- Poster session
- Carousel or gallery walk

Food for Thought

- Critical thinking questions should be asked in every class, every day
- Consistency helps students understand the expectations and move toward higher proficiency

Can I be excused? My brain is full.

Questioning Techniques

- Factual questions comprise the majority of questions asked in a mathematics class
 - More than 145 questions in 48 minute class period
 - Less than 2 seconds for response

Dougherty & Foegen, 2010

Changing skill tasks to support deeper thinking

Solve for *x*:

2x + 4 = 3x - 8

- Reversibility question
 - Find an equation whose solution is 12.
 - Find another equation, with variables on both sides of the equal sign, whose solution is 12.

Generalization questions

 Write a linear equation whose solution is not a whole number.

– Is it possible to predict if the solution of an equation is a whole number? Why or why not?

 Flexibility question Solve:

2x - 8 = 3x + 4

Solve it another way.

• Flexibility question Solve:

$$2x - 8 = 12$$

 $2(x + 2) - 8 = 12$
 $2(2x + 2) - 8 = 12$

Questions to promote problem solving and conjecturing

- Generalization questions
 - Asking students to find and describe patterns
 - What patterns do you notice?

Questions to promote problem solving and conjecturing

- Flexibility questions
 - Asking students to solve a problem in multiple ways OR to use what they know about one problem to solve another one
 - Solve the problem in another way.
 - How are these problems alike? How are they different?

Your Turn: Dig Deep!

- Consider the three types of questions.
 - Think about the topic you are currently teaching.
 - What are the most
 important ideas that you
 want students to learn?
 (Go beyond skill)
 - Construct a question for at least one type on a topic you are currently teaching.

Non-examples of questions

- What is your process for dividing fractions? (generalization)
- What equation could be used for the story problem? (flexibility)
- Why are addition and subtraction inverse operations? (reversibility)