Motivating the Unmotivated: Access to Learning

Barbara J. Dougherty, University of Missouri barbdougherty32@icloud.com Lisa Bendall, Sigsbee Charter School Lisa.bendall@sigsbee.org

Focus of Session

- Characteristics of students that are unmotivated
- Tasks to motivate engagement
- Discussion techniques
- Questioning strategies
- Question and answer/closure

Why are students unmotivated?

3-Tiered Support Model

Struggling Students in Mathematics

- Students who struggle with mathematics often
- use procedures that younger, typically achieving students use;
- make frequent errors when executing procedures; and
- have a poor understanding of concepts that are foundational to performing procedures (Geary, 2004)
- Additionally, they are often
- Dependent upon the teacher
- Quick to give up
- Frustrated by 'word' problems (Dougherty \& Foegen, 2011)

Tasks that Motivate

FIND A PLACE
(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each).
Player A
Player B
Score Score

Player A's Total Score

\square Player B's
Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each).
Player A
Player B
Score
Score

Player A's Total Score \square
\square Player B's Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each)
Player A
Player B
Score
Score

Player A's Total Score \square
\square Player B's Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each)
Player A
Player B

Player A's Total Score \square
\square Player B's Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each)
Player A
Player B

Player A's Total Score \square
\square Player B's Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each).
Player A
Player B

Player A's Total Score \square
\square Player B's Total Score

Tasks that Motivate

FIND A PLACE

(2 Players)
Use 40 cards numbered $0,1,2,3,4,5,6,7,8,9$ (four of each).
Player A
Player B

Bowl-A-Fact

Tasks to Motivate

- High interest
- Require some collaboration or cooperation
- Incorporates significant mathematical ideas

Kahoot

Teacher View

What type of transformation was used to create this picture


```
Rotation
```

Student View

Questions to consider:

- Why are you creating the Kahoot?
- What is your anticipated outcome?
- What knowledge of the concept do your learners already have mastered?
- What steps will be taken to ensure success for all levels of learners?
- Do you need to build in extra time for discussion, debate or other activities between questions?
- Are you intending to open it up to the public? How would you utilize the Kahoot to its fullest potential?

Instructional Techniques

Consider your use of homework:

- What is the purpose of homework that you assign?
- How do you manage homework on the day it is due?

Discussion Structure: Expert Groups

- Benefits
- All students must talk
- Students have to analyze work
- They feel confident about the problem they are responsible for
- Number off in the group
- Problem assigned to each number
- Meet as an expert group
- Come back to original group to share

Discussion Structure: Collaborative
 Groups

- Groups select a problem
- Meet as a group to decide on a solution(s) and method
- Presenter chosen randomly
- Present to class

Student Created Rubric

Presentation Rubric: $6^{\text {th }}$ Grade

Group: \qquad
Presentation Criteria
___ Talks confidently about his/her group's perspective
___ Makes eye contact with the audience
___Answers/addresses audience with respect
___Has organized the work and the presentation and it is legible
____Lets others in audience give ideas or ask questions
___Uses appropriate voice volume with good enunciation
___Actively listens to others
___Has a positive attitude toward the presentation and work presented
Presentation section worth 2 points: Must have at least 5 checked and non-negotiable for 2 points; 3 or 4-1 point

Mathematics Criteria
___Uses appropriate mathematical vocabulary
Gives supporting evidence for answer or process-describes and shows thinking
___Answers and anticipates questions peers may ask
____Shows multiple methods or answers as appropriate
___ Revises any incorrect or inaccurate solutions or solution methods
___Accurate mathematics
Mathematics section worth 3 points: Must have 4 or more checked and non-negotiable for 3 points; 3-2 points; 2-1 point.

Total Score \qquad out of 5 points

Discussion Structure: Poster Session and Gallery Walk/Carousel

Discussion Structures

- Expert groups
- Collaborative groups
- Poster session
- Carousel or gallery walk

Food for Thought

- Critical thinking
questions should be asked in every class, every day
- Consistency helps
students understand the expectations and move toward higher proficiency

Questioning Techniques

- Factual questions
comprise the majority of
questions asked in a mathematics class
- More than 145 questions in 48 minute class period
- Less than 2 seconds for response

Changing skill tasks to support deeper thinking

Solve for x :
$2 x+4=3 x-8$

Change the Task

- Reversibility question
- Find an equation whose solution is

12.

- Find another
equation, with
variables on both sides of the equal sign, whose solution is 12 .

Change the Task

- Generalization questions
- Write a linear equation whose solution is not a whole number.
- Is it possible to predict if the solution of an equation is a whole number? Why or why not?

Change the Task

- Flexibility question

Solve:

$$
2 x-8=3 x+4
$$

Solve it another way.

Change the Task

- Flexibility question Solve:

$$
\begin{aligned}
& 2 x-8=12 \\
& 2(x+2)-8=12 \\
& 2(2 x+2)-8=12
\end{aligned}
$$

Questions to promote problem solving and conjecturing

- Generalization questions
- Asking students to find and describe patterns
- What patterns do you notice?

Questions to promote problem solving and conjecturing

- Flexibility questions
- Asking students to solve a problem in multiple ways OR to use what they know about one problem to solve another one
- Solve the problem in another way.
- How are these problems alike? How are they different?

Your Turn: Dig Deep!

- Consider the three types of questions.
- Think about the topic you are currently teaching.
- What are the most important ideas that you want students to learn? (Go beyond skill)
- Construct a question for at least one type on a topic you are currently teaching.

Non-examples of questions

- What is your process for dividing fractions? (generalization)
- What equation could be used for the story problem? (flexibility)
- Why are addition and subtraction inverse operations? (reversibility)

