But My Kids Don't Think That Way!

My ESE Students Need the Fewest Number of Steps to Solve a Problem Correctly.

Kevin Larkin
larkinke@pcsb.org

Adrienne DeLong delonga@pcsb.org

Staff Developers
Elementary Mathematics
Pinellas County School, Florida

Pinellas County Schools

About 103,000 students 74 Elementary Schools 2 Elementary/Middle Schools 21 Middle Schools 18 High Schools 5 ESE Schools 23 Charter Schools $7^{\text {th }}$ Largest District in Florida $26^{\text {th }}$ Largest District in USA

Pinellas County
Over 900,000 people 588 miles of coastline 35 miles of sandy beaches 11 barrier islands

Monthly Average/Record Temperatures

ISING OBECTS USING Dramines

年 USING TUE RELATIONSHIP : ZI' EEN ADDITION aND SUBTiAMION EQUATIONS MTH A SMBOL FOR THE ONKNOWN NUNBER

COUNTING ON

First Grade
strategies based on the relationship between addition and subtraction

Second Grade

But My Kids Don't Think That Way!

Goals:

- Learn why we use various alternative/invented addition and subtraction strategies.
- Use tools to help students progress from a concrete to an abstract representation of a strategy.
- Elaborate on student thinking to develop and connect computation strategies
- SMPs
- PtA Teaching Practices

What is Fluency?

Principles to Action (pages 42-45)

- Fluency depends on and extends from conceptual understanding.
- To use mathematics effectively, students must be able to do much more than carry out mathematical procedures. They must know which procedure is appropriate and most productive in a given situation, what a procedure accomplishes, and what kind of results to expect. Mechanical execution of procedures without understanding their mathematical basis often leads to bizarre results.

What is Fluency?

Principles to Action: Continued

- Fluency builds from initial exploration and discussion of number concepts to using informal reasoning strategies based on meanings and properties of the operations to the eventual use of general methods as tools in solving problems.

What is Fluency?

Principles to Action: continued

- In meaningful learning of basic number combinations, students progress through welldocumented phases towards fluency.
- Using objects
- Visual representations
- Verbal counting
- Reasoning strategies using number relationships and properties

What is Fluency?
 Number Talks by Sherry Parish (p 38)

- Fluency is much more than fact recall.
- Fluency is knowing how a number can be composed and decomposed and using that information to be flexible and efficient with solving problems.

But My Kids Don't Think That Way! Questions

1. Which standards promote students' thinking in this way?
2. How did we develop the connections between the various tools, the student invented strategies, and the abstract computational recording of the strategies?
3. Which Mathematical Practices could be highlighted within lessons that promote student thinking?
4. Looking at the Effective Teaching Practice about fluency from Principles to Action, which teacher and student moves would you expect to see during a lesson that emphasize invented strategies and algorithms?
5. What other Effective Teaching Practices would you expect to surface in a lesson incorporating alternative strategies, such as those seen today?
6. Looking back at the computational strategies mentioned throughout the common core standards, how were they incorporated today

Developing Fluency within the Common Core Addition Standards

Tools

- Base Ten Blocks
- Ten Frames
- Hundreds Chart

Alternative Strategies

- Adding Up
- Over-shooting
- Partial Sums
- Open Number Line

Creating Anchor Charts that capture student thinking to support learning.

So . . .

What are the differences between math tools and math strategies?

Anchor Charts

Do you create your anchor charts before the lesson to help make your teaching easier?

or

Do you create your anchor charts based on student work during the lesson to support student learning?

Addition Strategies

Use the base ten blocks (along with double ten frames) to add the problem below. Do not use the standard algorithm.

Let's look at the various ways you may have solved this problem.

Adding Up:

Add the Tens First, then Add the Ones

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Adding Up:

Add the Tens First, then Add the Ones

47
$+38$

47
You added 3 tens or 30 to 47.
+30
+77 Now you have 77.

Adding Up:

Add the Tens First, then Add the Ones

Symbolic
representation

You added 3 ones to 77. Now you have 80.

You add 5 ones to 80. Now you have 85.

-1]	a	ala
(1)	19	

47
+30

+77 | 80 |
| ---: |
| $+\quad 3$ |
| 80 |
| 85 |

Addition Strategies: Adding Up Using a Hundreds Chart

47
$+38$

How can we capture this thinking on the hundreds chart?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Adding Up:

Add the Tens First, then Add the Ones

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

Student thinking

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	79	70	80
81	82	82	94	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Symbolic representation

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline 77
\end{array}
$$

80
(85)

$$
\begin{array}{r}
47 \\
+\quad 30 \\
\hline 77
\end{array} \begin{array}{r}
77 \\
+\quad 30 \\
\hline 80
\end{array}
$$

Addition Strategies: Adding Up Using an Open Number Line

How can we capture this thinking on the open number line?
$+38$

Adding Up: Add the Tens First, then Add the Ones

47
$+38$

Symbolic representation
+30

Adding Up . . . A Variation:

Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
-Symbolic Representation

Adding Up, A Variation: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

$\begin{array}{r}47 \\ +\quad 3 \\ \hline 50\end{array}$
You added 3 ones to 47. Now you have 50.

Adding Up, A Variation: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

Symbolic
representation

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

Now you have 80.

You add 5 ones to 80. Now you have 85.
You added 3 tens to 50.

47
$+38$
50
80
85

50
80

47
$+\quad 30$
+50
80
80
85

Adding Up, A Variation: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

47	1	2	3	3	4	5	6	7	8			10
+38	11	12	13	3	14	15	16	17	18		19	20
	21	22	23	2	24	25	26	27	28	22	29	30
	${ }^{31}$	32	33	3	34	35	${ }^{36}$	37	38		39	40
	41	42	4	3	4	45	46	47	- +			5
	51	52	5	35	54	55	56	57	58		59	-
	61	62	6	3	64	${ }^{65}$	66	67	68		59	
	71	72	7	3	74	75	76	7	78			
	81	${ }^{32}$	-	\bigcirc	+	${ }^{85}$	86	87	88	8	s9	90
	91	92	9	3	9	95	96	97	98	8	99	
47	50						80					
+ 3		30				+						
50			80					85				

Symbolic representation

$$
47
$$

$+38$
50
80
(85)

Adding Up, A Variation: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

How can we capture this thinking on the hundreds chart?
47
$+38$

Adding Up, A Variation: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

47 $+38$

Symbolic
representation

Adding Up . . . Another Variation -

Add the Ones First and then Add the Tens

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Adding Up: Another Variation Add the Ones First, then Add the Tens

47
$+38$

You added 3 ones to 47. Now you have 50.

47
$+\quad 30$
$+\quad 3$
50

Adding Up:
 Add the Ones First, then Add Tens

Symbolic
representation

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

47
$+38$
50

55
(85)

$$
\begin{array}{r}
47 \\
+\quad 30 \\
+\quad 5 \\
\hline 50 \\
\hline 55 \\
\hline 85
\end{array}
$$

Adding Up: Another Variation Add the Ones First, then Add the Tens

47
+38

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	40	49	50
51	52	50	54	55	56	57	58	59	60
61	62	63	64	5	66	67	68	69	70
71	72	73	74	5	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Symbolic representation

$$
\begin{array}{r}
47 \\
+38 \\
\hline 50 \\
55 \\
\hline 85
\end{array}
$$

Adding Up, A Variation: Add the Ones, and Then Add the Tens

How can we capture this thinking on the open number line?
47
$+38$

Adding Up, A Variation:

Add the Ones, and Then Add the Tens

Symbolic representation

Adding Up - Overshoot and Come Back

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Adding Up: Another Variation Overshoot and Come Back

47
$+38$

38 is close to 40. Add 40 to 47. . .

Adding Up: Overshoot and Come Back

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

38 is close to 40.
Add 40 to 47
which gives you 87.

Take away the extra 2 from 87. Now you have 85

$$
\begin{array}{r}
47 \\
+47 \\
\hline 87
\end{array}
$$

Adding Up: Another Variation Overshoot and Come Back

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	7	78	79	80
81	82	83	84	85	96	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Symbolic representation
$-\quad 2$
-85

Adding Up: Another Variation Overshoot and Come Back

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

$+40$
Symbolic representation

Moving Towards the Standard Algorithm:

Partial Sums

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Adding by Place Value - Partial Sums

Symbolic
representation

$$
\begin{array}{r}
47 \\
+\quad 38 \\
\hline
\end{array}
$$

What do students typically do?

They push the tens together and the ones together.

47
$+38$
70
 10
+5
$+\quad 5$
85

4 tens plus $\mathbf{3}$ tens equals $\mathbf{7}$ tens or 70 . 7 ones plus $\mathbf{8}$ ones equals 15 ones.

Partial Sums on the Hundreds Board

47

$+38$
Symbolic representation

Partial Sums on the Open Number Line

47
$+38$

Symbolic
representation
47
$+38$
70
$\begin{array}{r}+15 \\ \hline 85\end{array}$

Developing Fluency within the Common Core Subtraction Standards

Tools

- Base Ten Blocks
- Ten Frames
- Hundreds Chart
-99 Chart
- Open Number Line

Creating Anchor Charts that capture student thinking to support learning.

Subtraction Strategies

Use the base ten blocks (along with double ten frames) to subtract the problem below. Do not use the standard algorithm.

84
-37

Let's look at the various ways you may have solved this problem.

Subtraction: Adding Up

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction - Adding Up:
 Add the Tens First, then Add the Ones

Add up to reach 84.

$$
\begin{array}{r}
37 \\
+\quad 40 \\
\hline 77
\end{array}
$$

Subtraction - Adding Up:

Add the Tens First, then Add the Ones

$\begin{array}{r}37 \\ +47 \\ +40 \\ \hline 77 \quad 30\end{array}$

Subtraction - Adding Up:
 Add the Tens First, then Add the Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

$\begin{array}{r}37 \\ +47 \\ +40 \\ \hline 77 \quad 30\end{array}$

Trade the 10 ones for one ten

Subtraction - Adding Up:

Add the Tens First, then Add the Ones

Subtraction - Adding Up:

Add the Tens First, then Add the Ones

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	97	68	69	70
71	72	73	74	75	76	77	78	49	80
81	82	80	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Symbolic representation

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline 40 \\
+\quad 3 \\
+\quad 4 \\
\hline 47
\end{array}
$$

$+40 \quad+3 \quad+4=47$
37... 77 . . 80 ...

Subtraction - Adding Up:

Add the Tens First, then Add the Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

Symbolic
representation

84
$-\quad 37$
40
$+\quad 3$
$+\quad 4$
47
or

$37 \stackrel{+40}{ } \begin{gathered}\text { or } \\ +3\end{gathered}+87^{+4=47} \ldots 84$

Subtraction: Adding Up in Chunks: A Variation

Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction - Adding Up: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

37
+3
+40

Subtraction - Adding Up: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

37
+3
+40

Trade the 10 ones for one ten.

Subtraction - Adding Up: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

Symbolic representation

Subtraction - Adding Up: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

84
-37

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	30	36	40
41	42	43	44	45	46	47	48	49	0
51	52	53	54	55	56	57	58	59	6
61	62	63	64	65	66	67	68	69	50
71	72	73	74	75	76	77	78	79	80
81	82	80	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Symbolic representation
84
$-37+3$

or

Subtraction - Adding Up: Add Some Ones to Make the Next Ten, Add the Tens, then Add the Rest of the Ones

84
-37

Symbolic representation
84
$-37+3$
$+40$
$\begin{array}{r}+\quad 4 \\ \hline 47\end{array}$
or

Subtraction: Adding Up: Another Variation

Overshoot and Come Back

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction - Adding Up, Another Variation: Overshoot and Come Back

Symbolic
representation

84
$-37+50$
$\begin{array}{r}+\quad 3 \\ \hline 47\end{array}$
or

$$
+50-3=47
$$

37... 87 . . . 84

Subtraction - Adding Up, Another Variation: Overshoot and Come Back

84
-37

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	97	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	7	78	79	80
81	82	83	8	85	80	87	88	89	90
91	92	93	94	95	96	97	98	99	100

37	87
+50	$-3=47$
87	84

Symbolic representation

84
$-37+50$
$\begin{array}{r}-\quad 3 \\ \hline 47\end{array}$

Or
$+50-4=47$
$37 \ldots 87 \ldots 84$

Subtraction - Adding Up, Another Variation: Overshoot and Come Back

84
-37

$$
\begin{array}{rrr}
37 & 87 \\
+50 & -3 & =47 \\
\hline 87 & 84
\end{array}
$$

Symbolic representation

84
$-37+50$
$\begin{array}{r}-\quad 3 \\ \hline 47\end{array}$
or

$$
\begin{gathered}
+50-3=47 \\
37 \ldots 87 \ldots 84
\end{gathered}
$$

Subtraction: Take Away

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction: Take Away Take Away Tens and Then Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

Subtraction: Take Away -

Take Away Tens and Then Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
84 \\
-\quad 30 \\
\hline 54
\end{array} \quad \begin{array}{r}
54 \\
\hline 50
\end{array}
$$

Subtraction: Take Away -

Take Away Tens and Then Ones

Symbolic
representation

$$
\begin{array}{r}
84 \\
-37 \\
\hline 54(-30) \\
50(-4) \\
47(-3)
\end{array}
$$

Subtraction: Take Away Take Away Tens and Then Ones

> -37
> 84
> 54
> 50
> -30 54

Symbolic
representation

$$
\begin{aligned}
& 84 \\
&-\quad 37 \\
& \hline 54(-30) \\
& 50(-4) \\
& 47(-3)
\end{aligned}
$$

Subtraction: Take Away Take Away Tens and Then Ones

84
$\begin{array}{r}-\quad 37 \\ \hline\end{array}$
Symbolic
representation

Subtraction: Take Away A Variation

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
84 \\
-\quad 40 \\
\hline 80
\end{array}
$$

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

$$
\begin{array}{rrr}
84 & 80 & 50 \\
-\quad 4 & -30 & -\quad 3 \\
\hline 80 & 50
\end{array}
$$

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

Symbolic representation

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

84	0	1	2	3		4	5	6	7			9
	10	011	112	21	3	14	15	16	617	718		19
- 37		02	212	22	23	24	25	26	627	272		29
	30	303	313	23	3	34	35		637	373		39
		40	414	24	43	44	45		64	4		H
		05	15	25		54	55		657	75		59
		06	616	26	63	64	65		667	76		69
			17	27	73	74	75	76	677	777		79
			1	20		84	85		687	78		89
		019	919	29	93	94	95	96	697	79		99

Symbolic representation

$$
\begin{array}{r}
84 \\
-37 \\
-80(-4) \\
50(-30) \\
47(-3)
\end{array}
$$

Subtraction: Take Away, A Variation - Take Away Some Ones, Then the Tens, and Then the Rest of the Ones

84
-37

Symbolic
representation

$$
\begin{array}{r}
84 \\
-\quad 40 \\
\hline 80
\end{array} \begin{array}{r}
50 \\
\hline-\quad 30 \\
\hline 50
\end{array}
$$

Subtraction: Take Away Another Variation

- Base Ten Blocks
- Hundreds Chart
- Open Number Line
- Symbolic Representation

Subtraction: Take Away, Another Variation Overshooting

$$
\begin{array}{r}
84 \\
44 \\
-\quad 40 \\
\hline 44
\end{array}
$$

Subtraction: Take Away, Another Variation -

 Overshooting

Subtraction: Take Away, Another Variation Overshooting

$$
\begin{array}{r}
84 \\
-\quad 37 \\
\hline
\end{array}
$$

Symbolic
representation

$\begin{array}{r}84 \\ -\quad 40 \\ \hline 44\end{array} \begin{array}{r}44 \\ +\quad 3 \\ \hline 47\end{array}$

Questions

1. Which standards promote students' thinking in this way?
2. How did we develop the connections between the various tools, the student invented strategies, and the abstract computational recording of the strategies?
3. Which Mathematical Practices could be highlighted within lessons that promote student thinking?

Questions

4. Looking at the Effective Teaching Practice about fluency from Principles to Action, which teacher and student moves would you expect to see during a lesson that emphasize invented strategies and algorithms?
5. What other Effective Teaching Practices would you expect to surface in a lesson incorporating alternative strategies, such as those seen today?
6. Looking back at the computational strategies mentioned throughout the common core standards, how were they incorporated today?

Rate this presentation on the conference app!
Search "NCTM 2016" in your app store or follow the link at nctm.org/confapp to download

Join in the conversation! \#NCTMannual

Download available presentation handouts from the online planner at nctm.org/planner

