NCTM Annual Meeting, 2016

"As teachers, we want to minimize the wait-to-fail" approach and instead improve math learning through high-quality instruction and interventions."

Gresham & Little

NCTM Annual Meeting, 2016

Effective Tier 2 Intervention for Multi-Digit Multiplication & Division

Allyn Fisher, Director of Curriculum Development

Martha Ruttle, Senior Editor

The Math Learning Center • Salem, Oregon

www.mathlearningcenter.org

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

IES Recommendations

IES PRACTICE GUIDE

WHAT WORKS CLEARINGHOUSE

Assisting Students Struggling with Mathematics: Response to Intervention (Rtl) for Elementary and Middle Schools

NCEE 2009-4060 **U.S. DEPARTMENT OF EDUCATION**

✓ IES (Institute of **Education Sciences**)

- ✓ Published, 2009
- ✓ 8 recommendations backed by research-based evidence

http://ies.ed.gov/ncee/wWc/ pdf/practice_guides/rti_math_ pg_042109.pdf

Screen all students to identify those at risk for potential difficulties. Provide interventions to students identified as at risk.

Focus on in-depth treatment of whole numbers in K–5 and on rational numbers in grades 4–8.

Provide instruction that is explicit and systematic:

- ✓ Models of proficient problem solving
- ✓ Verbalization of thought processes
- ✓ Guided practice
- ✓ Corrective feedback
- ✓ Cumulative review

Include instruction on solving story problems that is based on common underlying structures.

Dustin and Tomas are playing a video game. After a few minutes, Dustin had 20 points, and Tomas had 4 times as many points as that. How many points did Tomas have?

Include opportunities for students to work with visual representations of mathematical ideas.

Devote about 10 minutes per intervention session to building fluent retrieval of basic arithmetic facts.

Monitor the progress of students receiving supplemental instruction and other students who are at risk.

Use motivational strategies.

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

A Tale of Two Problems

Take a moment to solve these two multiplication problems in whatever way you like.

- 11 36 <u>× 22</u> <u>× 83</u>
- How are they alike, how are they different?
- Which problem would be more challenging for your students? Why?
- What specific aspects would be most challenging?

A Tale of Two Problems, cont.

- ✓ How would your struggling students approach the problems?
- ✓ What kinds of strategies might they use?
- ✓ What kinds of errors would you see?
- ✓ What patterns, if any, do you notice in the errors they make?

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

Hot Spots = Common Errors & Challenges

Here's our list. How does it compare with yours?

- ✓ Lack of basic computation skills: addition with regrouping and multiplication facts
- ✓ Inability to accurately multiply with multiples of 10
- Losing track of partial products when working with numbers that are not multiples of 10
- Inability to determine whether results are reasonable

Hot Spot #1: (Lack of) Basic Computation Skills

Fill in all of the blanks and boxe products, and the standard mult Don't forget to label each region i

49 $\times 46$ 2754

 $6 \times 40 = 360$ $40 \times 9 = 360$

Hot Spot #1: Possible Solutions

- Delay multi-digit multiplication work until students have gained proficiency with basic multiplication facts
- Scaffold: Provide multiplication tables
 & encourage students to use them
- Choose your digits carefully (see handout)
- ✓ Front Load (see handout)

Hot Spot #2: Difficulty Multiplying Multiples of 10

3 Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.

Don't forget to label each region in the area model sketch with its correct area.

Hot Spot #2: Possible Solutions

- Connect Multiplication with Multiples of Ten to Basic Facts & Powers of Ten
- ✓ Use Visual Models

Hot Spot #2: Possible Solutions, cont.

- Connect Multiplication with Multiples of Ten to Basic Facts & Powers of Ten
- ✓ Use Visual Models

Hot Spot #2: Possible Solutions, cont.

- Employ the Associative Property
 - **2 × 3 = 6**
 - $2 \times 30 = 2 \times (3 \times 10) = (2 \times 3) \times 10 = 6 \times 10 = 60$
 - $2 \times 300 = 2 \times (3 \times 100) = (2 \times 3) \times 100 = 6 \times 100 = 600$
- ✓ Extend the Patterns

 $20 \times 30 = (2 \times 10) \times (3 \times 10) = (2 \times 3) \times 10 \times 10 = ?$

 $20 \times 300 = (2 \times 10) \times (3 \times 100) = ?$

 $200 \times 30 = (2 \times 100) \times (3 \times 10) = ?$

Hot Spot #3: Losing Track of Partial Products

b 22×11=230 6

Hot Spot #3: Losing Track of Partial Products

Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.

Don't forget to label each region in the area model sketch with its correct area.

Hot Spot #3: Possible Solutions

Build it with base 10 pieces.

Hot Spot #3: Possible Solutions, cont.

Reality bites...

12

Hot Spot #3: Possible Solutions, cont.

Context helps

Maggie's Chickens

	Problem
1	Maggie's chickens live in a coop in her backyard. The coop is 12 feet by 13 feet. What is the area of the coop?

Hot Spot #4: Not Recognizing the Unreasonable

3 Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.

Don't forget to label each region in the area model sketch with its correct area.

Hot Spot #4: Not Recognizing the Unreasonable

- Anticipate errors and use estimation to head them off.
 - Estimate the results of this multiplication combination. Explain your estimate.

56 × 25

Hot Spot #4: Not Recognizing the Unreasonable

✓ Use ratio tables to keep students rooted in what they know.

56 × 25	1	25
	10	250
	20	500
	40	1,000
	50	1,250
	5	125
	55	1,375
	56	1,400

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

Division is the Inverse of Multiplication

Consistent use of the word groups helps students make the connection.

- 42 ÷ 7 = ? *"How many* groups of 7 are there in 42?"

42 ÷ 7 = 6

"There are 6 groups of 7 in 42"

*Mr. G. went to the office supply store to buy markers for his 5*th graders. There are 15 markers *in a pack. He got 390 markers. How many packs did he buy?*

packs	1	10	20	5	25	26
markers	15	150	300	75	375	390

We can use a ratio table to build up to the dividend.

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

Arrays Also Work for Division

Arrays Go Large!

15 390

15

390 ÷ 15, cont.

390 ÷ 15, cont.

10

Hmmm.....

390 ÷ 15, solved

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying & Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions & Comments

14 378

Hmmm...okay, what do I know about 14 that might help?

1	10	20	5	
14	140	280	70	

I'm going to start with 20 groups of 14. That's 280.

20

14

I have 98 left to go, so I can take another 5 groups of 14.

 20
 5

 14
 280
 70

Now what? Oh, wait! I see!

Ratio Table + Scaffold Algorithm = Success!

1) Construct a ratio	1	10	20	5	2	
table for the divisor.	14	140	280	70	28	
2) Use the table to identify reasonable groups to subtract				2 5 20	27	
from the dividend.			14 3	78		

3) Continue to subtract groups until no longer possible.

) 28	30 70	28	
14	2 5 20 378 378 - 280 98 - 70 28	27	
	- 28		
_	0		

1 I I I

Questions & Comments

