NCTM Annual Meeting, 2016

"As teachers, we want to minimize the
'wait-to-fail' approach and instead improve math learning through high-quality instruction and interventions."

Gresham \& Little

NCTM Annual Meeting, 2016

Effective Tier 2 Intervention for

 Multi-Digit Multiplication \&
Division

Allyn Fisher, Director of Curriculum Development Martha Ruttle, Senior Editor

The Math Learning Center • Salem, Oregon www.mathlearningcenter.org

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

IES Recommendations

Assisting Studentis Struggling with Mathematics: Response to Intervention (Rit) for Elementary and Middle Schools

IES (Institute of
Education Sciences)
Published, 2009
8 recommendations backed by research-based evidence
http://ies.ed.gov/ncee/wWc/ pdf/practice_guides/rti_math_ pg_042109.pdf

Recommendation \#1

Screen all students to identify those at risk for potential difficulties. Provide interventions to students identified as at risk.

Recommendation \#2

Focus on in-depth treatment of whole numbers in $\mathrm{K}-5$ and on rational numbers in grades 4-8.

Recommendation \#3

Provide instruction that is explicit and systematic:

\checkmark Models of proficient problem solving
\checkmark Verbalization of thought processes
\checkmark Guided practice
\checkmark Corrective feedback
\checkmark Cumulative review

Recommendation \#4

Include instruction on solving story problems that is based on common underlying structures.

Dustin and Tomas are playing a video game. After a few minutes, Dustin had 20 points, and Tomas had 4 times as many points as that. How many points did Tomas have?

Recommendation \#5

Include opportunities for students to work with visual representations of mathematical ideas.

Recommendation \#6

Devote about 10 minutes per intervention session to building fluent retrieval of basic arithmetic facts.

Recommendation \#7

Monitor the progress of

 students receiving supplemental instruction and other students who are at risk.

Recommendation \#8

Use motivational strategies.

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

A Tale of Two Problems

Take a moment to solve these two

 multiplication problems in whatever way you like.11
$\times 22 \times 83$
\checkmark How are they alike, how are they different?
\checkmark Which problem would be more challenging for your students? Why?

What specific aspects would be most challenging?

A Tale of Two Problems, cont.

\checkmark How would your struggling students approach the problems?
\checkmark What kinds of strategies might they use?
\checkmark What kinds of errors would you see?
\checkmark What patterns, if any, do you notice in the errors they make?

$$
\begin{array}{r}
1136 \\
\times 22 \\
\hline
\end{array}
$$

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

Hot Spots = Common Errors \& Challenges

Here's our list. How does it compare with yours?

\checkmark Lack of basic computation skills: addition with regrouping and multiplication facts
\checkmark Inability to accurately multiply with multiples of 10
\checkmark Losing track of partial products when working with numbers that are not multiples of 10
\checkmark Inability to determine whether results are reasonable

Hot Spot \#1: (Lack of) Basic Computation Skills

1 Use the standard multiplication algorithm to find 36×83. Show all your work.

$6 \times 40=360$

$40 \times 9=360$

Fill in all of the blanks and boxe products, and the standard mult non't foroet to label each region i

Hot Spot \#1: Possible Solutions

\checkmark Delay multi-digit multiplication work until students have gained proficiency with basic multiplication facts
\checkmark Scaffold: Provide multiplication tables \& encourage students to use them
\checkmark Choose your digits carefully (see handout)
\checkmark Front Load (see handout)

Hot Spot \#2: Difficulty Multiplying Multiples of 10

3 Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.
Don't forget to label each region in the area model sketch with its correct area.

Hot Spot \#2: Possible Solutions

\checkmark Connect Multiplication with Multiples of Ten to Basic Facts \& Powers of Ten
\checkmark Use Visual Models

Hot Spot \#2: Possible Solutions, cont.

\checkmark Connect Multiplication with Multiples of Ten to Basic Facts \& Powers of Ten
\checkmark Use Visual Models

Hot Spot \#2: Possible Solutions, cont.

\checkmark Employ the Associative Property
$2 \times 3=6$
$2 \times 30=2 \times(3 \times 10)=(2 \times 3) \times 10=6 \times 10=60$
$2 \times 300=2 \times(3 \times 100)=(2 \times 3) \times 100=6 \times 100=600$
\checkmark Extend the Patterns
$20 \times 30=(2 \times 10) \times(3 \times 10)=(2 \times 3) \times 10 \times 10=$?
$20 \times 300=(2 \times 10) \times(3 \times 100)=$?
$200 \times 30=(2 \times 100) \times(3 \times 10)=?$

Hot Spot \#3: Losing Track of Partial Products
b

Hot Spot \#3: Losing Track of Partial Products

Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.
Don't forget to label each region in the area model sketch with its correct area.

Hot Spot \#3: Possible Solutions

Build it with base 10 pieces.

Hot Spot \#3: Possible Solutions, cont.

Reality bites...

13

12

Hot Spot \#3: Possible Solutions, cont.

Context helps

Maggie's Chickens

	Problem

Hot Spot \#4: Not Recognizing the Unreasonable

3 Fill in all of the blanks and boxes to solve 25×56 with the area model, four partial products, and the standard multiplication algorithm.
Don't forget to label each region in the area model sketch with its correct area.

Hot Spot \#4: Not Recognizing the Unreasonable

Anticipate errors and use estimation to head them off.

Estimate the results of this multiplication combination. Explain your estimate.

56×25

Hot Spot \#4: Not Recognizing the Unreasonable

Use ratio tables to keep students rooted in what they know.
56×25

1	25
10	250
20	500
40	1,000
50	1,250
5	125
55	1,375
56	1,400

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

Division is the Inverse of Multiplication

Consistent use of the word groups helps students make the connection.
$6 \times 7=42 \quad$ " 6 groups of 7 is 42"
$42 \div 7=? \quad$? F ? many groups of 7 are there in 42?"
$42 \div 7=6 \quad$ "There are 6 groups of 7 in 42"

Use Contexts First, Not Last

Mr. G. went to the office supply store to buy markers for his $5^{\text {th }}$ graders. There are 15 markers in a pack. He got 390 markers. How many packs did he buy?

packs	1	10	20	5	25	26
markers	15	150	300	75	375	390

We can use a ratio table to build up to the dividend.

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

Arrays Also Work for Division

$12 \div 3$

There are 4 groups of 3 in 12.

Arrays Go Large!

$1 5 \longdiv { 3 9 0 }$

15

$390 \div 15$, cont.

$390 \div 15$, cont.

10

$390 \div 15$, solved

$$
\left.\begin{array}{r}
6 \\
10 \\
10
\end{array}\right]^{66} \begin{array}{r}
390 \\
-150 \\
\hline 240 \\
-150 \\
\hline 90 \\
-90 \\
\hline 0
\end{array}
$$

Agenda

- IES Recommendations for Intervention
- Thinking about Multi-Digit Multiplication
- Identifying \& Addressing the Hot Spots
- Multiplying to Divide
- The Array/Area Model for Division
- The Scaffold Algorithm: A Success Story
- Questions \& Comments

Putting it All Together

$1 4 \longdiv { 3 7 8 }$

Hmmm...okay, what do I know about 14 that might help?

1	10	20	5		
14	140	280	70		

Putting it All Together

1	10	20	5		
14	140	280	70		

I'm going to start with $\mathbf{2 0}$ groups of 14 . That's 280.

Putting it All Together

1	10	20	5	2	
14	140	280	70	28	

I have 98 left to go, so I can take another 5 groups of 14.

Now what? Oh, wait! I see!

Putting it All Together

1	10	20	5	2	
14	140	280	70	28	

$$
\left.\begin{array}{r}
2 \\
5 \\
20
\end{array}\right] 27
$$

Ratio Table + Scaffold Algorithm = Success!

1) Construct a ratio table for the divisor.

1	10	20	5	2	
14	140	280	70	28	

2) Use the table to identify reasonable groups to subtract from the dividend.
3) Continue to subtract groups until no longer possible.

$$
\left.\begin{array}{r}
2 \\
5 \\
20
\end{array}\right] 27
$$

Questions \& Comments

