# Powerful Math Models to 

 Develop Conceptual Understanding and Procedural FluencyArrays \& Number Lines

## Who am I?

Ruth Teszeri
Instructional Program Leader Halton District School Board
Ontario, Canada
Email: teszerir@hdsb.ca

## What are models?

Mathematical models are learners' representations of situations or problems. These models can develop into powerful tools for thinking and reasoning.
e.g., 10-frame, number line, array

Fosnot, ed. (2010). Models of Intervention in Mathematics.

## What models do you see in your schools across different grades?

Introduce yourself to an elbow partner and share.

## Why use models for math?

$>$ Powerful mathematical tools for reasoning
$>$ Support a variety of learning preferences
$>$ Support the delivery of the Common Core State Standards

Students . . . "must learn to see, organize, and interpret the world through and with mathematical models."

Fosnot (ed.). 2010. Models of Intervention in Mathematics. p. 21

## When/how to use math models?

To model specific situations in mathematics
As a tool to represent students' strategies and mathematical thinking

As a tool for thinking
Fosnot et al. (2005). Contexts for Learning Mathematics.

## Learning goals for today

Why are the array and the number line powerful models of math?

How do they support students' mathematical development - conceptual understanding and procedural fluency?

# Examples of Continuums of Learning Using a Math Model Across Grades 

The Array; The Number Line

The Array

## Why arrays?

"Array" appears in the Common Core State Standards for Mathematics 17 times

From kindergarten to grade 5
Interconnect with area models

## More connections => increased understanding

"We understand something if we see how it is related or connected to other things we know."
(Van de Walle, 2007, p. 4)
"The degree of understanding is determined by the number and strength of the connections."

(Hiebert \& Carpenter, 1992, p. 67)

## What is an array?

Array - A rectangular arrangement of objects into rows and columns, used to represent multiplication
(e.g., $5 \times 3$ can be represented by 15 objects arranged into 5 columns and 3 rows).

Source: Ontario Gr. 1-8 Math Curriculum

## Use an array to model . . .

## $5 \times 7$

Does your $5 \times 7$ array look like any of these?


5

## Continuum

"closed" to "open" arrays..."area model"


## In which grades, have you seen "arrays" used?

## What did they look like?

## Talk Time

Children who struggle to commit basic facts to memory often believe that there are "hundreds" to be memorized because they have little or no understanding of the relationships among them.

Source: Fosnot \& Dolk. (2001). Young Mathematicians at Work: Constructing Multiplication and Division

## Memorization OR Automaticity

committing the results of operations to memory so that thinking is unnecessary
relies on
thinking about relationships

## Facts should eventually be memorized.

## Question: <br> How should this memorization be achieved?

Rote drill and practise (memorization) or by focusing on relationships (automaticity)?

Source: Fosnot \& Dolk. (2001). Young Mathematicians at Work: Constructing Multiplication and Division

## Build on your $5 \times 7$ array to model . . .

## $6 \times 7$

Circle and label the $5 \times 7$ part of the array.
What's left?
Circle and label it.



## Open Array => Growth Mindset

Every open array represents a fact a student knows and can use


## Open Array => Growth Mindset

Every open array represents a fact a student knows and can use


Partial Products \& the Distributive Property

Use an open array (or area model) to model the distributive property and solve...

$$
28 \times 43
$$

## Example: $(20+8) \times(40+3)$

## Distributive Property $\rightarrow$ Partial Products



$$
\begin{array}{r}
28 \\
\times \underline{43} \\
24 \\
60 \\
320 \\
\underline{800} \\
\hline 1204
\end{array}
$$

## How does this connect with the standard/usual algorithm?



## How does this connect with the standard/usual algorithm?

| 40 | 20 |  | 28 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 800 | 320 | X 43 | 28 |
|  |  |  | 24 60 | X 43 |
| + |  |  | 320 | 84 |
| 3 | 60 | 24 | 1204 | 1120 |
|  |  |  |  | 1204 |

## How does this connect with the standard/usual algorithm?

| 40 | 20 | 8 |  | 28 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 800 | 320 |  | X 43 | 28 |
|  |  |  | $=1120$ | 24 | X 43 |
| + |  |  |  | 320 | 84 |
| 3 | 60 | 24 | $=84$ | $\frac{800}{204}$ | 1120 |
|  |  |  |  |  | 1204 |

## Remember - "Why arrays?"

"Array" appears in the Common Core State Standards for Mathematics 17 times

From kindergarten to grade 5 (and beyond!) Interconnect with area models (not just 1 more thing)

## Distributive Property $\rightarrow$ Partial Products



28<br>X 43<br>24<br>60<br>320<br>800<br>1204

## Use an open array to model the

 distributive property and expand . . .$$
(x+3)(x+2)
$$

## Partial Products $\rightarrow$ Expanding




## Partial Products $\rightarrow$ Expanding



## Expanding - Look familiar?



$$
\begin{aligned}
& (x+3)(x+2) \\
& =x^{2}+3 x+2 x+6 \\
& =x^{2}+\mathbf{5} x+6
\end{aligned}
$$

## Expanding - Look familiar?



Partial products with open arrays
Using algebra tiles

$$
\begin{aligned}
& (x+3)(x+2) \\
& =x^{2}+3 x+2 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

## Expanding - Look familiar?



Partial products with open arrays
Using algebra tiles

$$
\begin{aligned}
& (x+3)(x+2) \\
& =x^{2}+3 x+2 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Helping students make connections and build understanding

How can using arrays across grades support the development of student thinking in mathematics?
Conceptual understanding?
Procedural fluency?
Discussion

## The Number Line

## 1005

## Your Answer?

## Did you use...



## Did you use your internal number line?

 1005 - 997
## Did it look like this?

## 1005 997



8

In which grades, have you seen number lines used?
How were they used?

Talk Time

## Why number lines?

- Much more than just a counting tool
- A powerful model for building mathematical thinking
- Applicable model for all grades
- Provides students with a visual representation of the linear nature of numbers
- Implies direction
- Fundamental to the understanding of integers
- Precursor to algebraic reasoning


## Why number lines?

- Can be used to develop understanding of
- Addition and subtraction
- Multiplication and division
- Decimals, fractions, and percents
- Fosters student engagement and participation
- Helps correct misconceptions immediately


## How do you tend to read this?

82-37

## How would you calculate this?

82-37

## Did you use one of these subtraction methods?



Removal

## Difference

## Comparison

## Did you use one of these subtraction methods?



Removal

## Difference

## Comparison

Are we using/recognizing these these different ways in our classes?

## The power of the constant difference model



## Use the number line to model 53-27 as removal and difference.

These samples might help guide your thinking:


Removal



Difference

## Removal or "take away"

## $53-27=26$ <br> 

## Difference

## $53-27=26$



## Constant Difference Model



## But what about . . . BEYOND?

"We understand something if we see how it is related or connected to other things we know."
(Van de Walle, 2007, p. 4)
"The degree of understanding is determined by the number and strength of the connections."

(Hiebert \& Carpenter, 1992, p. 67)

## Use a number line to model 9-(-11)

## Difference

$$
9-(-11)=20
$$



## Constant Difference Model



How can using number lines across grades support the development of student thinking in mathematics?
Conceptual understanding?
Procedural fluency?
Discussion

## In my class?

Classroom look-fors
A grade-appropriate, balanced approach to instruction including the use of concrete materials and abstract concepts
Purposeful planning and use of models to meet specific needs of students and the standards

## In my class?

Key questions you might ask yourself:
What model might I use to support this math concept?
How does this model help deepen or further students' thinking about this math concept?


## Worth Watching!

## Dr. Alex Lawson Lakehead University

http://www.curriculum.org/k-12/en/projects/leaders-in-educational-thought-special-edition-on-mathematics


Rekenrek

## PROGRESSION OF MODELS Number Lines

Open and Closed Number Lines


## FREE Resources

| $\begin{aligned} & \text { pose0 } \\ & \text { pasos: } \end{aligned}$ | Learning to Think Mathematically with the Rekenrek | http://cesa5mathscience. wikispaces. com/file/view/Learning+to+Think+Mathematically + with+the+Rekenrek.pdf |
| :---: | :---: | :---: |
|  | Using the Rekenrek as a visual Model | http://bridges1.mathlearningcenter. org/media/Rekenrek 0308.pdf |
|  | Learning to Think Mathematically with the Number Line | http://bridges1.mathlearningcenter. org/files/media/rekenrek/numberline_overview.pdf |
|  | Getting to Grips with Bead Strings | http://maisdccssm.wikispaces. <br> com/file/view/Ideas+for+Using+Bead+Strings.pdf |
|  | Open Number Lines in a Problem Solving Lesson | http://www.contextsforlearning. com/samples/K3SampUnitOverFINAL.pdf |

## Models...the last word

The purpose of the models is not to fit the data, but to sharpen the questions.

Samuel Karlin

## Learning goals for today?

Why are the array and the number line powerful models of math?

How do they support students' mathematical development - conceptual understanding and procedural fluency?

## Ruth Teszeri

 Instructional Program Leader Halton District School Board Ontario, CanadaEmail: teszerir@hdsb.ca https://goo.gl/sfLRnU


