\qquad

Anticipation Guide

End of Quarter Calculus Review on Limits

Directions: Pair up with a partner. Write True or False in the "Before" column. After the lesson, complete the "After" column.

Before	Given Statement	After
	1. A limit is a number that represents the behavior of function values.	
	2. A limit "approaches" a function value but never reaches it.	
	3. A limit can never equal a function value because limits are only about what a function is "approaching".	
	4. When asked to "find the limit", the limit refers to the x-value under the notation. For instance, $\lim _{x \rightarrow-3^{-}} \frac{1}{x+3}=-\infty$, the limit is -3 in this case.	
	5. The arrow in the limit notation implies direction from the left only. For example: $\lim _{x \rightarrow 2} \frac{1}{(x-2)}$ means as x approaches 2 from the left only.	
	6. In the graph below, the limit does not exist because of the hole at $(2,4)$.	
	7. The infinity symbol ∞ represents a very large number.	
	8. If a limit equals infinity, "= $=$ ", then the limit exists. (Ex: $\lim _{x \rightarrow \infty} 2 e^{x}=\infty$)	

9. The solution and interpretation to the problem below for $\lim _{x \rightarrow \infty} \frac{1}{x}=\infty$ is correct and hence, a good example of an infinite limit.	
10. $\lim _{x \rightarrow-3} \frac{1}{x+3} \rightarrow$ d.n.e., because left hand limit does not equal the right hand limit: $-\infty \neq+\infty$ The graph of $y=\frac{1}{x+3}$ This is the graph of $y=\frac{1}{x}$ shifted left by 3 .	

11. Given the graph of $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$, the limit exists and equals infinity, because the left hand limit and right hand limit both equal plus infinity.	
12. In the graph above for $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$, the vertical asymptote at $\mathrm{x}=0$ is a limit because it is like a brick wall that you can't go past.	
13. The graph of $\lim \cos \theta$ has 2 limits: 1 and -1 .	
14. The limit is the horizontal asymptote for: $\lim _{x \rightarrow \pm \infty} \frac{9 x^{2}+2}{3 x^{2}-2 x+5}$	

15. The graph below is classified as a quadratic function.	
16. Above, the point (2,6) is not on the graph of the function.	
17. The domain of the function above is (0,4) and range is ($-\infty, 6]$	
18. Even though $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ is not defined at 0 , due to symmetry of being an even function, the limit exists and converges to 0 .	
19. The function on a finite interval domain [-1,1], the limits are pi and 0 . $\lim _{x \rightarrow-\infty} \arccos x=\pi$, and $\lim _{x \rightarrow \infty} \arccos x=0$ Arccos x	
20. $\lim _{x \rightarrow 0} \arccos x$, there is no limit (or hole) at pi/2 because you can walk right over it.	

