Welcome to Session #164: Understanding Quadratic Functions through Transformations

Presented by Carrie Hair, <u>chair@washoeschools.net</u> and Dr. Jenny Salls, <u>jsalls@washoeschools.net</u>

Session Goal: Create a visual approach for students when working with quadratic functions and equations.

Part 1: Opening Task: Solve this problem through a student's mind. They have not been introduced to graphing quadratics or solving for key aspects of quadratic functions algebraically. How would you approach this problem?

https://www.illustrativemathematics.org/content-standards/HSF/IF/B/4/tasks/1279

Suppose Brett and Andre each throw a baseball into the air.

The height of Brett's baseball is given by $h(t) = -16t^2 + 79t + 6$ where h is in feet and t is in seconds.

The height of Andre's baseball is given by the graph below: height (in feet)

Brett claims that his baseball went higher than Andre's, and Andre says that his baseball went higher.

Who is right?

How long is each baseball airborne?

Construct a graph of the height of Brett's throw as a function of time on the same set of axes a the graph of Andre's throw (if not done already), and explain how this can confirm your claims to parts (a) and (b).

Part 2: Understanding Quadratic Functions Graphically - work through this activity think like a student.

Introduction to Quadratic Functions

Name_____ Date_____Period _____

Today's Lesson Goals:

- Understand and identify the vocabulary/parts of the graph of a quadratic function.
- Determine the real zeros of a quadratic function using a graph. •
- Determine the number of real zeros of a quadratic function using a graph. ٠

Part 1: Graph the following quadratic function: $f(x) = (x - 3)^2 - 4$.

The name for the graph of quadratic function is a ____

Label the parts of a graph of a quadratic function:
Vertex
Line/Axis of Symmetry
Real Zeros
Y-intercept

Try these!

$f(x) = (x+3)^2 - 1$	$f(x) = -2(x-3)^2 + 8$	
Predict	Predict	
Vertex:	Vertex:	
Axis of Symmetry:	Axis of Symmetry:	
Real Zeros:	Real Zeros:	
Verify	Verify	
Graphically	Graphically	

Think about it!

1. What relationships do you see between the following:

Vertex and the Line of Symmetry

Vertex and the Real Zeros

Line of Symmetry and the Real Zeros

Part 2: Graph the following quadratic functions

Think about it!

1. How can you predict the number of real zeros from the equation?

Homework (complete on a separate pie	ece of paper)				
Factor the following polynomials.					
1. $3x^2 + 18x + 27$	2. $3x^3 - 75x$	3. $x^2 + 2x - 24$			
4. $5x^2 + 20x + 10$	5. $6x^2 - x - 15$	6. $4x^2 - 10x - 24$			
Predict the line of symmetry, vertex, and number of zeros. Graph to verify 7. $f(x) = x^2 - 9$ 8. $f(x) = x^2 - 5$					

9. $f(x) = (x + 1)^2 - 4$ 10. $f(x) = (x - 1)^2 + 2$

Part 3: Connect Graphing Quadratic Functions to Solving Quadratic Equations (HSA.REI.D.11)

http://achievethecore.org/page/976/quadratic-equations-mini-assessment

The table below contains single equations in a single variable. Using graphs to solve the equations, check the appropriate box to show whether there is no real solutions, exactly 1 real solution, or exactly 2 real solutions

			Exactly	Exactly
		No Real Solutions	1 Real Solution	2 Real Solutions
a.	$(a+5)^2 = 25$			
b.	$(n-5)^2 = 25$			
c.	$(z+5)^2 = -25$			
d.	$(x-5)^2 = 0$			
e.	$16 - (l+5)^2 = 25$			
f.	$(f+1)^2 = (f+2)^2$			
g.	$5b^2 = 5b^2 + 1$			

Part 4: The "In between" (notes area ⁽ⁱ⁾)

Part 5: Bringing it all together. <u>http://map.mathshell.org/lessons.php?unit=9245&collection=8</u>

Quadratic Functions

1. Here are 4 equations of quadratic functions and 4 sketches of the graphs of quadratic functions.

