What's in	Your Numeracy Toolkit? NCTM 2016
Debbie: dthor	npson1@usd259.net & Toni: tosterbuhr@usd259.net
Important Number S	ense Vocabulary:
Counting (verbal):	Knows and says the number sequence
-1 Correspondence:	says one number name for each object counted
Cardinality:	
Conservation:	
Inclusion:	
=:	understands "the same as" in one way or balance of
Unitizing:	
Magnitude:	Understanding about relationships of numbers (distance from zero, which is bigger, use mental number line)
Subitizing:	
Part-Part-Whole:	Once students begin to understand inclusion, they begin to consider parts of a number. (6 is made up of 5 and 1, 4 and 2, 3 and 3).
Compensation:	Children begin to see parts of the whole and then are able to compensate. $(5 + 1 \text{ equals } 6 \text{ then I also know that } 4 + 2 \text{ equals } 6$ because 4 is one less than 5 and 2 is one more than 1; 1 was removed from 5 and given to 2).
Mdth Tool Mchu Rekensek (20) Rekensek (20) Rekensek (20) Ten-Free Black Ten-Free Black Ten-Free	session containing:

Aumber developments based on interaction http://schoolwires.henry.k12.ga.us/ Page37070 Sense Allows students a way to see multiple ways to approach a problem http://www.k5mathteachingresources.com. http://gregtangmath.com/materials Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.ncfm.athteachingresources.com. http://gregtangmath.com/materials 2 row of 10 Decomposition-combinations of numbers (1-9 & teen numbers) Fits wonderfully with Number Talks and Clear Associative and composition (party and ways counting by ones) 2 row of 10 Decomposition-combinations of numbers (1-9 & teen numbers) Rekerek: 2 row of 10 Decomposition-combinations of numbers (1-9 & teen numbers) Rekerek: 3 subitizing Compensation strategies Interactive 1 -1 counting Subitizing Interactive 1 -1 counting Benchmark numbers 5 and 10 Interactive 2 corroy Decomposition of quantities, pre-place value, double and near doubles Didax.com 10 Crick or Numbers in Sorroy Repeated structure of numbers (algorithm of +1) Interactive 10 Crick or Numbers in Sorroy Pater mumbers(losa on these onfusing) Teen nears ten, first too "teen" words do on have -een; thirteen instead of threateen fifteen instead of fineteen; seven-teen does indouble like 17; Pater aswitches after 20; Wor		. Drovideo teophor insight into studente surrent number concert	Free Number Talks PPTs:
Number Page37070 Page37070 Sense - Develops students a way to see multiple ways to approach a problem Student Task Cards Tools - Decentextualizes and solves story situations - - Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.ncm.orgicatalog/orductsview.asax7id=124 Pars woodshifty is woodshifty woodshifty is woodshifty woodshifty woodshifty is woodshifty woodshi			
Sense Allows students a way to see multiple ways to approach a problem Decontextualizes and solves story situations Decontextualizes and solves story situations Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.hcmathaetainingesources.com. Staction Task Code Http://www.hcmathaetainingesources.com. Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.ncm.org/catalog/orductsview.aspt?/d=122 Group counting (move away from always counting by ones) Decomposition-combinations of numbers (1-9 & teen numbers) Subitizing, Inclusion, Unitizing Compensation strategies Associative and communitive properties Flue Frames Subitizing 1-1 counting Benchmark numbers 5 and 10 Teen Numbers Decomposition and composition (part-part-whole, missing parts) Comparison of quantities, pre-place value, double and near doubles To Crid or Analy interacting (accurate of numbers (algorithm of +1) Benchmark numbers (15, 10, 20, 25, 50, 100, etc) Magnitude of number Pre- and place value (base-ten system) Connect number/mark and backward (and from other numbers besides one) Connear ing (more, less and equal) Teen means ten, first too 'teen' words do not have -teen, thirteen instead of threateen, fitteen instead of threateen, seven-teen does not look like 17, interactive_com/ interactive_com/ interactive_com/ interactive_c	Number	 Develops students ability to visualize ("see") and think about number 	Page/37070
Tools Decontextualizes and solves story situations Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.aclu.org/localaog/productsview.aspx?Id=129 the sential Understanding Series: http://www.aclu.org/localaog/productsview.aspx?Id=129 2 row of 10 books, 5 red, 5 red, 9 Compensation strategies Associative and communitive properties Interactace http://www.didax.com/rekenrek/app Rekerrek Sublitzing, Inclusion, Unitizing Compensation strategies Associative and communitive properties Interactace http://illuminations.netm.org/ Ten Frances Benchmark numbers 5 and 10 Teen Numbers Decomposition of quantities, pre-place value, double and near doubles Didax.com Google: Doug Clements, sublitzing Ten Frances Benchmark numbers (algorithm of +1) Heractace http://www.abcya.com/ interactace Magnitude of number Pre- and place value (base-ten system) Works for 20-100 says tens first, then ones Number Path	Sense		
ICOLS Develops Fluency (Flexibility, Accuracy & Efficiency) Essential Understanding Series: http://www.nctm.org/taalog/productsview.asp/?ld=129 Their wonderfully with Number Tables and Classroom Discussions: Decomposition-combinations of numbers (1-9 & teen numbers) Subitizing, Inclusion, Unitizing Subitizing, Inclusion, Unitizing Compensation strategies Associative and communitive properties Frame: Subitizing 1.1 counting Benchmark numbers 5 and 10 Teen Numbers Decomposition and composition (part-part-whole, missing parts) Comparison of quantities, pre-place value, double and near doubles The Prame: Repeated structure of numbers (agorithm of +1) Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Magnitude of number Ormet numbers (here instead of fivetene, seven-teen of look like 17. Pater and place value (base-ten system) Connect number/name (language of count can be so confusing) Teen numbers, first two "teen" words do not have -teen, thirteen instead of fivetenes, first, then ores Rumber Path Counting forward and backward Comparing (more, less and equal) Comparing (more, less and equal) Magnitude (distance from a number) 		Description and extraction of a first	
Essential Understanding Series: http://www.nctm.org/catalog/products/iew.aspx?/d=129 Cassroom/Documen-sone-support Rekerrek D C Group counting (move away from always counting by ones) Interactive 2 rows 60 D E Decomposition-combinations of numbers (1-9 & teen numbers) Interactive 5 wints Subitizing, Inclusion, Unitizing Rekerrek C Compensation strategies 6 Croup counting Compensation strategies Rekerrek C Compensation strategies 7 Not Activities 1-1 counting Interactive 8 Est Frame Parce Subitizing Interactive 9 Locomposition and composition (part-part-whole, missing parts) Comparison of quantities, pre-place value, double and near doubles 100 Crkid or Repeated structure of numbers (algorithm of +1) Interactive 100 Crkid or Repeated structure of numbers (algorithm of +1) Interactive 100_number, chart hum 100 Crkid or Repeated structure of numbers (algorithm of +1) Interactive 100_number, chart hum 100 Crkid or Repeated structure of numbers (algorithm of +1) Interactive 100_number, chart hum 100 Crkid or Pre-and place value (base-ten system) Interactive 100_number, chart hum 100 Crkid or or Teen numbers (here instead of fiveleon, seven-teen does not look like 17. Interactive 100_nummer, chart hu	IOOIS	·	
Area of D Decomposition-combinations of numbers (1-9 & teen numbers) http://www.didax.com/rekenrek/app. Switze Subitzing, Inclusion, Unitizing catalog mathleamingcenter.org/store/ product-6720.htm Switze Subitzing Associative and communitive properties Pree Fromes Subitzing Interactive Associative and communitive properties Interactive http://liluminations.nctm.org/ Ten Fromes Subitzing Interactive http://liluminations.nctm.org/ Ten Fromes Decomposition and composition (part-part-whole, missing parts) Comparison of quantities, pre-place value, double and near doubles Didax.com To Crid or Repeated structure of numbers (1, 5, 10, 20, 25, 50, 100, etc) Interactive http://nivm.usu.edu/en/nav/library.html Board Pre- and place value (base-len system) Interactive (100_number_chart.htm Interactive (100_number_chart.htm Numbers Path Counting forward and backward (and from other numbers besides one) Imagnitude (distance from a number) Number Path Counting forward and backward Magnitude (distance from a number) http://nivm.usu.edu/en/nav/library.html Imagnitude (distance from a number) Magnitude (distance from a number) http://nivm.usu.edu/en/nav/library.html <th></th> <th></th> <th>Classroom Discussions:</th>			Classroom Discussions:
beack, 5 red 5 white * Subitizing, Inclusion, Unitizing Recervet Actaktes: http:// catalog.mathlearningcenter.org/store/ product-6720.htm Fue Fromes * Associative and communitive properties * Subitizing Interactive http://iluminations.netm.org/ Ten Fromes * Decomposition and composition (part-part-whole, missing parts) * Comparison of quantities, pre-place value, double and near doubles Interactive http://iluminations.netm.org/ Ten Fromes resources: Didax.com Google: Doug Clements, subitzing 10 Crkid or Hurcheds Board * Repeated structure of numbers (algorithm of +1) * Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) * Magnitude of number 10x/0 arrow, numbers in squores Interactive * Teen means ten; first two 'teen' words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17 * Pattern switches after 20: Words for 20-100 says tens first, then ones Interactive http://nivm.usu.edu/en/nav/vi/brary.html Warber Path Number Path Number Path Number Path Number Path Number Path * Counting forward and backward (and from other numbers besides one) Imagnitude (distance from a number) Ucgered Number Path Number Path Number Path * Counting forward and backward http://nivm.usu.edu/en/nav/vi/brary.html Number Path Number Path Number Path * Counting forward and backward http://nivm.usu.edu/en/nav/vi/brary.html Number Path Number Path Number Path * Counting forward and backward http://nivm.usu.edu/en/nav/vi/brary.html Number Path Number Path * Counting for	Rekenrek	 Group counting (move away from always counting by ones) 	Interactive:
5 white * Sublitzing, Inclusion, Unitzing rectailog methicamingcenter.org/store/ product-6720.htm * Associative and communitive properties Interactue: product-6720.htm Interactue: http://illuminations.nctm.org/ Flue Frames * Sublitzing Interactue: http://illuminations.nctm.org/ * Teer Frames * Benchmark numbers 5 and 10 Interactue: http://illuminations.nctm.org/ 2x5 arroy * Teen Numbers Decomposition (part-part-whole, missing parts) * Decomposition and composition (part-part-whole, missing parts) * Comparison of quantities, pre-place value, double and near doubles Interactue: http://illuminations.nctm.org/ 100 Crid or * Repeated structure of numbers (algorithm of +1) * Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Interactive: http://nvw.abcya.com/ interactive_100_number_chart.htm 10X10 arroy, * Teen means ten; first two 'teen" words do not have -teen, thirteen instead of threeten, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Interactive_10_number_chart.htm Number Path Number Path Number Path Number Path Number Path * Counting forward and backward (distance from a number) Magnitude (distance from a number) Image: Ima	2 rows of 10	 Decomposition-combinations of numbers (1-9 & teen numbers) 	http://www.didax.com/rekenrek/app
 Compensation strategies Associative and communitive properties Associative and communitive properties Fue Fromes Subitizing 1-1 counting Interactive Interactive	beads, 5 red, 5 white	* Subitizing, Inclusion, Unitizing	Rekenrek Activities: http://
* Associative and communitive properties Interactive Fue Fromes * Subitizing h5 array * 1-1 counting Ten Fromes * Benchmark numbers 5 and 10 * Teen Numbers * Decomposition and composition (part-part-whole, missing parts) Ten Fromes resources: Didax.com Goagle: Doug Clements, subitizing 10 Crici or * Repeated structure of numbers (algorithm of +1) Hurdreds * Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Magnitude of number * Didax.com/ interactive_100_number_chart.htm ToX or array, * Teen means ten; first two 'teen' words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path * Counting forward and backward (and from other numbers besides one) * Comparing (more, less and equal) * Magnitude (distance from a number) Warder Path * Counting forward and backward * Comparing (more, less and equal) * Magnitude (distance from a number) * Marker Lue * Counting forward and backward * Comparing (more, less and equal) * Magnitude (distance from a number)	JWINCE	* Companyation strategies	
http://initiations.netm.org/ http://illuminations.netm.org/ Ten Frames 2x5 array * 11 counting * Benchmark numbers 5 and 10 * * 2x5 array * Decomposition and composition (part-part-whole, missing parts) * Comparison of quantities, pre-place value, double and near doubles INO Crid or * Repeated structure of numbers (algorithm of +1) * * Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) * * * Pre- and place value (base-ten system) *			product-or zo.num
 Benchmark numbers 5 and 10 Teen Numbers Decomposition and composition (part-part-whole, missing parts) Comparison of quantities, pre-place value, double and near doubles Repeated structure of numbers (algorithm of +1) Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Magnitude of number Pre- and place value (base-ten system) Connect number/name (language of count can be so confusing) Tee means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of threeteen, seven-teen does not took like 17. Pattern switches after 20: Words for 20-100 says tens first, then ones Comparing (more, less and equal) Magnitude (distance from a number) Comparing (more, less and equal) Magnitude (distance from a number) 	Five Frames	* Subitizing	Interactive:
Ten Hrunks * Teen Numbers Decomposition and composition (part-part-whole, missing parts) Didax.com Comparison of quantities, pre-place value, double and near doubles Didax.com Google: Doug Clements, subitizing 700 Grid or * Repeated structure of numbers (algorithm of +1) Interactive Hunchecks Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Hunchers in Magnitude of number NOX10 arroug * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of threeteen, seven-teen does not look like 17. Image: Counting forward and backward (and from other numbers besides one) Number Path * Counting forward and backward (and from other numbers besides one) Image: Counting forward and backward * Magnitude (distance from a number) Magnitude (distance from a number) Image: Counting forward and backward * Comparing (more, less and equal) * Comparing (more, less an	1x5 array	* 1-1 counting	http://illuminations.nctm.org/
2x5 array * Decomposition and composition (part-part-whole, missing parts) Didax.com * Comparison of quantities, pre-place value, double and near doubles Google: Doug Clements, subitizing 100 Crid or * Repeated structure of numbers (algorithm of +1) Interactive: Hunchecks Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) http://www.abcya.com/ * Magnitude of number * Connect number/.chart.htm 10x10 arrour, numbers in squares * Connect number/name (language of count can be so confusing) * * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path * Counting forward and backward (and from other numbers besides one) * Excrete: Comparing (more, less and equal) * Magnitude (distance from a number) Number Path * Counting forward and backward http://nlvm.usu.edu/en/nav/vlibrary.html Image: * Comparing (more, less and equal) * http://nlvm.usu.edu/en/nav/vlibrary.html Image: * Comparing (more, less and equal) * * <th>Ten Frames</th> <td>* Benchmark numbers 5 and 10</td> <td>Ten Frames resources:</td>	Ten Frames	* Benchmark numbers 5 and 10	Ten Frames resources:
 Comparison of quantities, pre-place value, double and near doubles Comparison of quantities, pre-place value, double and near doubles Comparison of quantities, pre-place value, double and near doubles Repeated structure of numbers (algorithm of +1) Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Magnitude of number Pre- and place value (base-ten system) Connect number/name (language of count can be so confusing) Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path Counting forward and backward (and from other numbers besides one) Comparing (more, less and equal) Magnitude (distance from a number) Layered Number Line Comparing (more, less and equal) Comparing (more, less and equal) Magnitude (distance from a number) 	2x5 array	* Teen Numbers	Didax.com
 Comparison of quantities, pre-place value, double and near doubles Repeated structure of numbers (algorithm of +1) Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) Magnitude of number Pre- and place value (base-ten system) Connect number/name (language of count can be so confusing) Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path Counting forward and backward (and from other numbers besides one) Secrete Comparing (more, less and equal) Magnitude (distance from a number) Layered Number Line Counting forward and backward Http://nlvm.usu.edu/en/nav/vibrary.html Layered Number Line Counting forward and backward http://nlvm.usu.edu/en/nav/vibrary.html Eargth Comparing (more, less and equal) Magnitude (distance from a number) 			Google: Doug Clements, subitizing
Hundreds Board * Benchmark numbers (1, 5, 10, 20, 25, 50, 100, etc) http://www.abcya.com// interactive_100_number_chart.htm 10x10 array, numbers in squares * Pre- and place value (base-ten system) http://www.abcya.com// interactive_100_number_chart.htm 2 array * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path Number Path Number Path * Counting forward and backward (and from other numbers besides one) Image: Count incode * Image: Counting forward and backward (and from other numbers besides one) Number Path Number Path * Counting forward and backward (and from other numbers besides one) Image: Counting forward and backward Number Path Number Path * Counting forward and backward Image: Counting forward and backward Number Path Number Path * Counting forward and backward Image: Counting forward and backward * Counting forward and backward Image: Counting forward and backward Image: Counting forward and backward * Counting forward and backward Image: Counting forward and backward Image: Counting forward and backward * Comparing (more, less and equal) *		 Comparison of quantities, pre-place value, double and near doubles 	
Board * Detrominant numbers (1, 5, 10, 20, 20, 30, 100, etc) interactive_100_number_chart.htm * Magnitude of number * Pre- and place value (base-ten system) interactive_100_number_chart.htm Numbers in squares * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * * Pattern switches after 20: Words for 20-100 says tens first, then ones * Number Path * Counting forward and backward (and from other numbers besides one) Excrete. * Comparing (more, less and equal) Number Path * Counting forward and backward * Comparing (more, less and equal) http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) integraduat	110 Grid or	 Repeated structure of numbers (algorithm of +1) 	Interactive:
* Magnitude of number 10x10 array, numbers in squares * Teen and place value (base-ten system) * Connect number/name (language of count can be so confusing) * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path * Counting forward and backward (and from other numbers besides one) * Comparing (more, less and equal) * Magnitude (distance from a number) * Magnitude (distance from a number) * Comparing (more, less and equal) * Counting forward and backward * Counting forward and backward * Magnitude (distance from a number) * Comparing (more, less and equal) * Magnitude (distance from a number) * Magnitude (distance from a number)	Hundreds		
numbers in squares * Connect number/name (language of count can be so confusing) * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * * Pattern switches after 20: Words for 20-100 says tens first, then ones * Number Path * Counting forward and backward (and from other numbers besides one) * Comparing (more, less and equal) * * Magnitude (distance from a number) * Number Path * Counting forward and backward * Counting forward and backward * * Magnitude (distance from a number) * Number Path * Counting forward and backward * Counting forward and backward http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) * * Counting forward and backward http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) * * Magnitude (distance from a number) *			
squares * Connect number/name (anguage or count can be so contusing) * Teen means ten; first two "teen" words do not have -teen, thirteen instead of threeteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path * Counting forward and backward (and from other numbers besides one) Discrete. count model 1 2 3 Layered Number Path * Counting forward and backward Mumber Line * Counting forward and backward * Counting forward and backward * Counting forward and backward * Magnitude (distance from a number) * Counting forward and backward * Comparing (more, less and equal) * Comparing (more, less and equal) * Magnitude (distance from a number) * Magnitude (distance from a number)	,		http://nlvm.usu.edu/en/nav/vlibrary.html
of threeteen, fifteen instead of fiveteen, seven-teen does not look like 17. * Pattern switches after 20: Words for 20-100 says tens first, then ones Number Path * Counting forward and backward (and from other numbers besides one) Discrete, count model 1 2 3 Layered Number Path * Counting forward and backward Magnitude (distance from a number) * Magnitude (distance from a number) * Comparing (more, less and equal) * Magnitude (distance from a number) * Comparing (more, less and equal) * Counting forward and backward * Counting forward and backward * Comparing (more, less and equal) * Comparing (more, less and equal) * Magnitude (distance from a number)	squares		1 2
Number Path * Counting forward and backward (and from other numbers besides one) Discrete, Comparing (more, less and equal) * count model * Magnitude (distance from a number) Layered * Magnitude (distance from a number) Number Path * Counting forward and backward Number Line * Counting forward and backward * Comparing (more, less and equal) http://nlvm.usu.edu/en/nav/vlibrary.html * Comparing (more, less and equal) * * Magnitude (distance from a number) *	·		11 12
Discrete, count model * Comparing (more, less and equal) 1 2 3 Magnitude (distance from a number) Layered Number Path Magnitude (distance from a number) Number Line length * Magnitude (distance from a number) * Counting forward and backward * Comparing (more, less and equal) http://nlvm.usu.edu/en/nav/vlibrary.html		* Pattern switches after 20: Words for 20-100 says tens first, then ones	
count model * Magnitude (distance from a number) Layered Number Path Number Line * * Counting forward and backward * Comparing (more, less and equal) * Magnitude (distance from a number)	Number Path	 Counting forward and backward (and from other numbers besides one) 	
1 2 3 * Magnitude (distance from a number) Layered Number Path Number Path * Counting forward and backward Number Line * Counting forward and backward * Comparing (more, less and equal) * Magnitude (distance from a number)	<u>Discrete</u> ,	* Comparing (more, less and equal)	
Layered Number Path Number Path Number Path * Counting forward and backward Number Line * Comparing (more, less and equal) * Comparing (more, less and equal) * Magnitude (distance from a number)		* Magnitude (distance from a number)	
Number Line * Counting forward and backward http://nlvm.usu.edu/en/nav/vlibrary.html Continuous, length * Comparing (more, less and equal) Image: Comparing (more, less and equal) * Magnitude (distance from a number) Image: Comparing (more, less and equal) Image: Comparing (more, less and equal)	Layered		
length * Magnitude (distance from a number)	Number Line	* Counting forward and backward	http://nlvm.usu.edu/en/nav/vlibrary.html
length * Magnitude (distance from a number)	<u>Continuous,</u>	* Comparing (more, less and equal)	
* Parts of a whole (fractions)	length		
	0 i ż ś	* Parts of a whole (fractions)	

Common Addition and Subtraction Situations (pg 88 in CCSS)

	C	Change Unknown	Start Unknown
	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5
Taken from	Five apples were on the table. I ate two apples. How many apples are on the table now? 5 - 2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 - ? = 3	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? ? - 2 = 3
			Both Addends Unknown ¹
Put Together/ Take Apart ²	Total Unknown Three red apples and two green apples are on the table. How many apples are on the table? 3 + 2 = ?	Addend Unknown Five apples are on the table. Three are red and the rest are green. How many apples are green? 3 + ? = 5, 5 - 3 = ?	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? 5 = 0 + 5, $5 = 5 + 05 = 1 + 4$, $5 = 4 + 15 = 2 + 3$, $5 = 3 + 2$
		Discon Linksows	Smaller Unknown
	Difference Unknown ("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	Bigger Unknown (Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?
Compare ³	("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? 2 + ? = 5, 5 - 2 = ?	 (Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? 2 + 3 = ?, 3 + 2 = ? 	(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5

Shading taken from OA progression

Blue shading indicates the four Kindergarten problem subtypes. Students in grades 1 and 2 work with all subtypes and variants (blue and green). Yellow indicates problems that are the difficult four problem subtypes or variants that students in Grade 1 work with but do not need to master until Grade 2.

¹These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as. ²Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

³For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

vestions to Facilitate Tathematical Practices for Visual Math Tools! Debbie: dthompson1@usd259.net 1

jestions to Facilitate Tathematical Practices for Visual Math Tools! Debbie: dthompson1@usd259.net

Five Types of Mathematical Representations

Source: The National Council of Teachers of Mathematics. (2014). *Principles to Actions Ensuring Mathematical Success for All*, Reston, VA: NCTM.

Five Types of Mathematical Representations

Source: The National Council of Teachers of Mathematics. (2014). Principles to Actions Ensuring Mathematical Success for All, Reston, VA: NCTM.

Rekenreks are simple, but powerful manipulatives that use beads to help students make mental images of numbers and move away from always counting by ones. (not an abacus) "Put your beads in **start position**. Now, without touching the beads, count the first three beads in your mind. On the count of three, slide all three beads at once across with **one push**.

Ready? One... two...three!"

Important to understand: This tool has a starting position with all beads on the

right.! Any beads on the left show the solution. This helps develop decomposition of number. Guide students with number of "pushes" you want them to use. (ie, use one push on top row, or two pushes; one on top & one on bottom row, etc.)

Chunking beads in sets help students with using 5 and 10 as anchors during adding and subtracting which is more efficient than one-by-one counting and helps students understand inclusion and cardinality because all (7) beads must be pushed to see or "have" (7) in all.

This tool provides learners with the **visual models** they need to discover number relationships and develop a variety of addition and subtraction strategies, such as doubles plus or minus one, making tens, and compensation, thereby leading to automaticity of basic facts.

4

Rekenreks are simple, but powerful manipulatives that use beads to help students make mental images of numbers and move away from always counting by ones. (not an abacus) "Put your beads in **start position**. Now, without touching the beads, count the first three beads in your mind. On the count of three, slide all three beads at once across with **one push**. Ready? One... two...three!"

Important to understand: This tool has a starting position with all beads on the right.! Any beads on the left show the solution. This helps develop decomposition of number. Guide students with number of "pushes" you want them to use. (ie, use one push on top row, or two pushes; one on top & one on bottom row, etc.)

Chunking beads in sets help students with using 5 and 10 as anchors during adding and subtracting which is more efficient than one-by-one counting and helps students understand inclusion and cardinality because all (7) beads must be pushed to see or "have" (7) in all.

This tool provides learners with the **visual models** they need to discover number relationships and develop a variety of addition and subtraction strategies, such as doubles plus or minus one, making tens, and compensation, thereby leading to automaticity of basic facts.

- How many beads in all do you see? How many beads are on top row? Bottom row?
- Can you show a way to make ____? Can you show a different way to make the same number? •
- How many do you need to add /take-away to make _____? •
- What can we do to make ____?
- How many are hiding behind the white panel (or sticky note/paper)?

Subifizing:

Without counting each bead, how do know there are ?

Combinations of ten:

Show an amount (8) of beads, ask, "how many more is needed to make 10?"

Teen Quantities:

Show me (12) with two pushes: (one ten, two ones) (students say, I see 12 ones or 1 ten and 2 ones)

Compensation strategy:

- Play "Sum it Up." Place 4 beads in the 'middle" of top row (2 red, 2 white). Make 4 another way (must take 1 red away to add one white: 1 red, 3 white)
 - 5

REKENREK

- How many beads in all do you see? How many beads are on top row? Bottom row?
- Can you show a way to make ____? Can you show a different way to make the same number? ٠
- How many do you need to add /take-away to make _____?
- What can we do to make ____ ?
- How many are hiding behind the white panel (or sticky note/paper)?

Subifizing:

Without counting each bead, how do know there are ____?

Combinations of ten:

Show an amount (8) of beads, ask, "how many more is needed to make 10?"

Teen Quantities:

Show me (12) with two pushes: (one ten, two ones) (students say, I see 12 ones or 1 ten and 2 ones)

Compensation strategy:

Play "Sum it Up." Place 4 beads in the 'middle" of top row(2 red, 2 white). Make 4 another way (must take 1 red away to add one white: 1 red, 3 white)

00000	0000
00000	000-00
00000	0000
00000	00000
00000	00000
2-	

Adapted from Number Sense Routines

Five & Ten-Frames

"Ten-ness" is one of the best gifts a child can receive in primary education. It is the "UNIT" understanding that allows students to think flexibly and be able to look at a quantity such as 14 and know it is one-ten, 4 ones or 14 ones or 10-ones and 4 more ones. This is a prerequisite for place-value understanding.

Using frames helps...

- provide teacher insight into students current number concept developments based on how they interact with ten-frames.
- students use "anchor" numbers 5 and 10.
- develop students ability to visualize ("see") and think about number in terms of parts/relationships such as part-part-whole, missing parts, more and less, pre-place value, double and near double, combinations of 5/10, compose/decompose, subset, DISTANCE, etc.
- students share and learn strategies from each other.

TIPs:

- Consider modifying/scaffolding skills with use of five-frames
- Always fill the top row first, starting on the left, the same way you read. (builds mental image of number)
- Ask questions that focus on number of dots/spaces, saying one/two or more/less than the number of dots, saying the "ten fact" (4+6=10),
- Connect to daily math routines (attendance, number of the day, survey, etc.)

6

Five & Ten-Frames

"Ten-ness" is one of the best gifts a child can receive in primary education. It is the "UNIT" understanding that allows students to think flexibly and be able to look at a quantity such as 14 and know it is one-ten, 4 ones or 14 ones or 10-ones and 4 more ones. This is a prerequisite for place-value understanding.

Using frames helps...

- provide teacher insight into students current number concept developments based on how they interact with ten-frames.
- students use "anchor" numbers 5 and 10.
- develop students ability to visualize ("see") and think about number in terms of parts/relationships such as part-part-whole, missing parts, more and less, pre-place value, double and near double, combinations of 5/10, compose/decompose, subset, DISTANCE, etc.
- students share and learn strategies from each other.

TIPs:

- Consider modifying/scaffolding skills with use of five-frames
- Always fill the top row first, starting on the left, the same way you read. (builds mental image of number)
- Ask questions that focus on number of dots/spaces, saying one/two or more/less than the number of dots, saying the "ten fact" (4+6=10),
- Connect to daily math routines (attendance, number of the day, survey, etc.)

FIVE AND TEN-FRAMES

1. Getting to Know Five-Frames

- How many dots?
- How many spaces?

2. Getting to Know Ten-Frames

(using blank frames with counters. *Tip: watch for students that can adjust count w/out removing all)

- Show me "____"
- Now, show me "____"

3. Ten Frame Flash-Card

- How many dots?
- How many spaces?
- What is one/two more?
- What is one/two less?

Conceptual Subitizing: Which has more/less?

4. Part-Part-Whole Relationships

- What are the dots plus the spaces?
- What is a number model that represents your ten-frame?

5. Develop Pre-place Value

A set of ten is important in understanding. 13 is ten ones and 3 more and also 13 ones.

- How many ones are there?
- How many tens?

6. Make Ten on a Ten-Frame

- How many more do you need to make ten?
- How do you know?
- 7

FIVE AND TEN-FRAMES

- 1. Getting to Know Five-Frames
- How many dots?
- How many spaces?

2. Getting to Know Ten-Frames

(using blank frames with counters. *Tip: watch for students that can adjust count w/out removing all)

- Show me "____"
- Now, show me "____"

3. Ten Frame Flash-Card

- How many dots?
- How many spaces?
- What is one/two more?
- What is one/two less?

Conceptual Subitizing: Which has more/less?

Adapted from Teaching Student-Centered Mathematics

4. Part-Part-Whole Relationships

- What are the dots plus the spaces?
- What is a number model that represents your ten-frame?

5. Develop Pre-place Value

A set of ten is important in understanding. 13 is ten ones and 3 more and also 13 ones.

- How many ones are there?
- How many tens?

6. Make Ten on a Ten-Frame

- How many more do you need to make ten?
- How do you know?

- A **number path** is a **count** model; the numbers are represented by a rectangle and each rectangle can be counted. (A picture graph is a great example in which identical pictures are used to show how many in all. A cloud or sun stands for ONE thing.)
- A **humber line** is a **length** model; each number is represented by its length or distance from zero. With a number line children have to count the length units and not the numbers. (number line caution: some kids start the count with zero or starting in middle (between 0 and 1). When young children are still making sense of numbers, a number path can help solidify and build their number understanding, build confidence and accuracy when solving problems. A bar graph used a number line to show the length of the bars in the graph.

Consider making a vertical number path, connecting it to days in a month of school or collecting data such as weather, temperature, surveys. Students visualize how numbers change and grow as they begin writing two-digit numbers which can be more intuitive than a horizontal number path since the number becomes larger as it goes up.

Gonnect the Number Path and Rekenrek!

The change in color for every group of five numbers (red/white) helps students to see the symbolic representation to the concrete.

- A **number path** is a **count** model; the numbers are represented by a rectangle and each rectangle can be counted. (A picture graph is a great example in which identical pictures are used to show how many in all. A cloud or sun stands for ONE thing.)
- A **humber line** is a **length** model; each number is represented by its length or distance from zero. With a number line children have to count the length units and not the numbers. (number line caution: some kids start the count with zero or starting in middle (between 0 and 1). When young children are still making sense of numbers, a number path can help solidify and build their number understanding, build confidence and accuracy when solving problems. A bar graph used a number line to show the length of the bars in the graph.

Consider making a vertical number path, connecting it to days in a month of school or collecting data such as weather, temperature, surveys. Students visualize how numbers change and grow as they begin writing two-digit numbers which can be more intuitive than a horizontal number path since the number becomes larger as it goes up.

Gonnect the Number Path and Rekenrek!

The change in color for every group of five numbers (red/white) helps students to see the symbolic representation to the concrete.

NUMBER PATH

Counting:

When learning the number sequence forward and backward, count and touch each number on the number path, pausing and ask,

- What number comes next? How do you know?
- What number is before? After?
- Starting at (28), is it closer to zero or 50? Is ____ closer to 50 or 100?
- Using a 0-20 path, stating 10 is the "middle" pull a number card and explain where the number should be placed and how you know.
- What does 7 and 8 have in common with 17 and 18?

Comparing (more, less, equal or same)

- Which is bigger/greater ____ or ____.? Show me on the number path.
- Which is smaller/less than ____ or ____? How do you know? can you prove it on the number path?
- How much less is _____ than ____?
- How much of a difference is there between _____ and ____?
- How many (counters, years, etc.) between (5) and (7)?

9

NUMBER PATH

Counting:

When learning the number sequence forward and backward, count and touch each number on the number path, pausing and ask,

- What number comes next? How do you know?
- What number is before? After?
- Starting at (28), is it closer to zero or 50? Is ____ closer to 50 or 100?
- Using a 0-20 path, stating 10 is the "middle" pull a number card and explain where the number should be placed and how you know.
- What does 7 and 8 have in common with 17 and 18?

Comparing (more, less, equal or same)

- Which is bigger/greater ____ or ____.? Show me on the number path.
- Which is smaller/less than ____ or ____? How do you know? can you prove it on the number path?
- How much less is _____ than ____?
- How much of a difference is there between _____ and ____?
- How many (counters, years, etc.) between (5) and (7)?

Number Line

The **number line** can do much more than simply help children count or recall the sequence of numbers. It is a tool for helping children reinforce cardinality, develop greater flexibility in mental arithmetic as they actively construct mathematical meaning, develop number sense, come to understand number relationships, and develop powerful strategies for addition and subtraction.

TIPs:

- Connect to 110 Grid, thermometer, clock, number of the day growing number line routine,
- Notice "zero" holds a spot
- Model the language of mathematics! (forward, backward, halfway to 10, closer to five, even, odd, greater than, less than, one more/less, two more/less, growing pattern, increase, decrease, distance (spaces) between, tick marks, "This MUCH is five".
- Effective tool to help students decontextualize story problems

10

Number Line 17<u>181920</u>

The **number line** can do much more than simply help children count or recall the sequence of numbers. It is a tool for helping children reinforce cardinality, develop greater flexibility in mental arithmetic as they actively construct mathematical meaning, develop number sense, come to understand number relationships, and develop powerful strategies for addition and subtraction.

TIPs:

- Connect to 110 Grid, thermometer, clock, number of the day growing number line routine,
- Notice "zero" holds a spot
- Model the language of mathematics! (forward, backward, halfway to 10, closer to five, even, odd, greater than, less than, one more/less, two more/less, growing pattern, increase, decrease, distance (spaces) between, tick marks, "This MUCH is five".
- Effective tool to help students decontextualize story problems

NUMBER LINE

- What can you tell me about the number line? (growth pattern)
- What number comes before ____? What number comes after ____?
- What number is between _____ and ____?
- _____ is 2 more than (3 more than, etc.) _____?
- What multiples of ten is _____ between? What is _____ groups of _____?
- _____ plus how many more make _____. (do many examples to make 10)
- _____ minus how many make _____.
- Let's count by _____ starting at _____.
- Which are farther apart ____ and ____ or ____ and ____?

Pick a number. Ask students what they know about that number? (Encourage use of "math talk" with vocabulary such as less than, greater than, skip counting, counting in groups, even/odd, between, before, after, etc.

*Number line questions provided by Kim Sutton

11

Pick a number. Ask students what they know about that number? (Encourage use of "math talk" with vocabulary such as less than, greater than, skip counting, counting in groups, even/odd, between, before, after, etc.

*Number line questions provided by Kim Sutton

What is a Hundreds Chart/Grid?

Usually: A 10x10 grid with numbers 1 to 100 printed in the squares. Number Grids are "return sweep" number lines to showcase patterns & save space.

Can also:

- $\Rightarrow\,$ Be arranged in vertical columns of ten to see the repeating tens number more easily. The tens at the bottom "summarize" the count
- \Rightarrow Start with 0 to keep all "30s" on one row

Hundreds Chart/Grid helps students:

- Allows students to easily see the repeated structure of numbers (benchmarks of 1, 5, 10, 20, 25, 50, 100, etc., magnitude of number, etc.)
- · Develops initial understanding of place value and base-ten system
- · Connect number/name (language of count can be so confusing)
 - ◊ Teen means ten
 - o First two "teen" words do not have -teen
 - o Thirteen instead of threeteen, fifteen instead of fiveteen
 - ◊ Seven-teen does not look like 17.
 - o Pattern switches after 20: English words for 20-100 says ones second
 - \diamond Decade/teen word confusion: fourteen and forty, sixteen and sixty

What is a Hundreds Chart/Grid?

Usually: A 10x10 grid with numbers 1 to 100 printed in the squares. Number Grids are "return sweep" number lines to showcase patterns & save space. **Can also**:

- ⇒ Be arranged in vertical columns of ten to see the repeating tens number more easily. The tens at the bottom "summarize" the count
- \Rightarrow Start with 0 to keep all "30s" on one row

Hundreds Chart/Grid helps students:

- Allows students to easily see the repeated structure of numbers (benchmarks of 1, 5, 10, 20, 25, 50, 100, etc., magnitude of number, etc.)
- · Develops initial understanding of place value and base-ten system
- · Connect number/name (language of count can be so confusing)
 - \diamond Teen means ten
 - First two "teen" words do not have -teen
 - Thirteen instead of threeteen, fifteen instead of fiveteen
 - Seven-teen does not look like 17.
 - o Pattern switches after 20: English words for 20-100 says ones second
 - \diamond Decade/teen word confusion: fourteen and forty, sixteen and sixty

110 GRID

What does a 110-grid have in common with a number line?

- What do you notice about the number ____?
- How many digits are in the number ____?
- What number comes before/after?
- Start counting (forward/backward) from the number _____.
- Can you count by 10s going down the right-hand column?
- How many groups of ten are in the number _____

Building relationships of numbers:

- Is your number greater than_____
- Is your number between _____ and _____
- Does your number have a(____) tens? Or (____) ones?
- What is 10 more?
- What is 10 less?
- How many more to make a ten?

13

110 GRID

								-	-	1	-		•	4.	0		
			1		2		3	4	I	5	6	7	8	9	10	10100	
			11		12		13	14	į.	15	16	17	18	19	20		
			21		22	2	23	24	T	25	26	27	28	29	30		
			31		32	63	33	34		35	36	37	38	39	40		
			41	4	2	4	3	44	4	5	46	47	48	49	50		
			51		52	5	3	54	E	55	66	67	58	59	60		
			61	6	2	6	3	64	4	35	66	67	68	69	70		
			71	7	2	7.	3	74		75	76	77	78	79	80		
			81	8	32	8	3	84	8	35	86	87	88	89	90		
1000				-	199			1.5					-	9	100		
1	11	21	31		41		51		61	++	71	81	91				
2	12	22	32	-	42		52		62		72	82	92		100.		
3	13	23	33	-	43		53		63	-+-	73	83	93				
4	14	24	34	-	44	-	54		64	-++	74	84	94				
5	15	25	35		45	-	55		65		75	85	96				
6	16	26	36		46		56		66		76	-	-				
7	17	27	37		47		0	+	1	2	3	4	5	6	7	8	9
8	18	28	38		48		10	+-	1	12	13	14	15	16	17	18	19
9	19	29	39		45		20	+-	1	22	23	24	25	26	27	28	29
10	20	30	40		54		30	3	-	32	33	34	35	36	37	38	39
							40	4	-	42	43	44	45	46	47	48	49
						1	50	+	51	52	53	54	55	56	57	58	59
							60	6	-	62	63	64	65	66	67	68	69
							70	7	-	72	73	74	75	76	77	78	79
							80	8	-	82	83	84	85	86	87	88	89
							90	9	1	92	93	94	95	96	97	98	99
							100	1	01	102	103	104	105	106	107	108	109

- What do you notice about the number ____?
- How many digits are in the number ____?
- What number comes before/after?
- Start counting (forward/backward) from the number _____.
- Can you count by 10s going down the right-hand column?
- How many groups of ten are in the number _____

Building relationships of numbers:

- Is your number greater than_____
- Is your number between _____ and _____
- Does your number have a(___) tens? Or (___) ones?
- What is 10 more?
- What is 10 less?
- How many more to make a ten?

What does a 110-grid have in common with a number line?

IMPORTANT NUMBER SENSE VOCABULARY

Subitizing: Quickly knows how many without counting. (two types: conceptual, perceptual)

Cardinality: Understands the final number in a sequence is the total number of objects counted.

Conservation: Understands "three" is always "three" regardless of the formation or size.

Hierarchical Inclusion: all numbers require the previous number (3 is nested inside 4)

Unit:

- Discrete Unit: counting unit of exact things
- Continuous Unit: measurement unit, things can be divided into smaller units

Magnitude: relationship of numbers (such as distance from zero, 10 closer to 10 or 100?)

Anchor/Benchmark : numbers such as 5, 10, 20, 100 that help students compute by decomposing quantities into friendlier numbers

Compensation: decreasing from one part and increasing another leaves the quantity unchanged.

Fluency: flexibility, accuracy, efficiency

"=" sign: same as", or "balance"

14

IMPORTANT NUMBER SENSE VOCABULARY

Subitizing: Quickly knows how many without counting. (two types: conceptual, perceptual)

Cardinality: Understands the final number in a sequence is the total number of objects counted.

Conservation: Understands "three" is always "three" regardless of the formation or size.

Hierarchical Inclusion: all numbers require the previous number (3 is nested inside 4)

Unit:

- Discrete Unit: counting unit of exact things
- Continuous Unit: measurement unit, things can be divided into smaller units

Magnitude: relationship of numbers (such as distance from zero, 10 closer to 10 or 100?)

Anchor/Benchmark : numbers such as 5, 10, 20, 100 that help students compute by decomposing quantities into friendlier numbers

Compensation: decreasing from one part and increasing another leaves the quantity unchanged.

Fluency: flexibility, accuracy, efficiency

"=" sign: same as", or "balance"

ADDITION & SUBTRACTION FACT STRATEGIES

Counting On: Use when adding 1 or 2 to a given number.

Fact with O: Use when one of the addends is O. (especially helpful with story problems)

Doubles: add two of the same number together (2+2 or 8+8)

Doubles +1: Find a double hidden in the fact where one addend is one more than the other.

Combinations of Ten: Group the numbers to find expressions that would equal 10.

Make a Ten: Use with addend of 8 or 9 building up to 10 + adding on the rest.

Doubles +2: Finding a double hidden in the fact where one addend is two more than the other.

+9: When an addend is 9, then just add 10 to the other addend and take 1 away.

Subtraction Fact Strategies:

Think Addition: Using known addition fact to sol e the subtraction problem (13–5, think what goes with 5 to make 13?) *Number line is a helpful mental tool!

Related Equations: think of the related + and — facts to recall the missing number.

Build up Through the Ten: Used when the subtrahend is 8 or 9. (14-9, 9 and 1 is 10 and 4 more makes 5.)

Back Down Through Ten: Working backward with 10 as a "bridge" (15-6: take 5 away from 15 to get to ten, take 1 more away, leaving 9).

15

ADDITION & SUBTRACTION FACT STRATEGIES

Counting On: Use when adding 1 or 2 to a given number.

Fact with O: Use when one of the addends is O. (especially helpful with story problems)

Doubles: add two of the same number together (2+2 or 8+8)

Doubles +1: Find a double hidden in the fact where one addend is one more than the other.

Combinations of Ten: Group the numbers to find expressions that would equal 10.

Make a Ten: Use with addend of 8 or 9 building up to 10 + adding on the rest.

Doubles +2: Finding a double hidden in the fact where one addend is two more than the other.

+9: When an addend is 9, then just add 10 to the other addend and take 1 away.

Subtraction Fact Strategies:

Think Addition: Using known addition fact to sol e the subtraction problem (13–5, think what goes with 5 to make 13?) *Number line is a helpful mental tool!

Related Equations: think of the related + and — facts to recall the missing number.

Build up Through the Ten: Used when the subtrahend is 8 or 9. (14-9, 9 and 1 is 10 and 4 more makes 5.)

Back Down Through Ten: Working backward with 10 as a "bridge" (15-6: take 5 away from 15 to get to ten, take 1 more away, leaving 9).

http://www.corestandards.org/Math/Content/mathematics-glossary/Table-1/

Common addition and subtraction.¹

	RESULT UNKNOWN	CHANGE UNKNOWN	START UNKNOWN
ADD TO	Two bunnies sat on the -grass. Three more bunnies hopped there. How many bunnies are on the-grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the -grass before? ? + 3 = 5
TAKE FROM	Five apples were on the table. I ate two apples. How many apples are on the table now?5-2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5 - ? = 3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before?? -2 = 3

16

ADDITION & SUBTRACTION FACT SITUATIONS

http://www.corestandards.org/Math/Content/mathematics-glossary/Table-1/

Common addition and subtraction.¹

	RESULT UNKNOWN	CHANGE UNKNOWN	START UNKNOWN
ADD TO	Two bunnies sat on the -grass. Three more bunnies hopped there. How many bunnies are on the-grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the -grass before? ? + 3 = 5
TAKE FROM	Five apples were on the table. I ate two apples. How many apples are on the table now?5-2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5 - ? = 3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before?? -2 = 3

ADDITION & SUBTRACTION SITUATIONS

	TOTAL UNKNOWN	ADDEND UNKNOWN	BOTH ADDENDS
	TOTAL ONKNOWN	ADDEND UNKNOWN	UNKNOWN ²
PUT TOGETHER / TAKE APART ³	Three red apples and two -green apples are on the table. How many apples are on the table? 3 + 2 = ?	Five apples are on the table. Three are red and the rest are green. How many apples are green? 3 + ? = 5, 5-3 = ?	Grandma has five flowers. How many can she put in the red vase and how many in her blue vase? $5 =$ 0 + 5, 5 + 0.5 = 1 + 4, 5 = 4 + 1.5 = 2 + 3, 5 = 3 + 2
COMPARE	DIFFERENCE UKNOWN	BIGGER UNKNOWN	SMALLER UNKNOWN
	("How many more?" version):Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have then Julie? 2 + ? = 5, 5 - 2 = ?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5	(Version with "more"):Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5

ADDITION & SUBTRACTION SITUATIONS

	TOTAL UNKNOWN	ADDEND UNKNOWN	BOTH ADDENDS UNKNOWN ²
PUT TOGETHER / TAKE APART ³	Three red apples and two -green apples are on the table. How many apples are on the table? 3 + 2 = ?	Five apples are on the table. Three are red and the rest are-green. How many apples are-green? 3 +? = 5, 5-3 = ?	Grandma has five flowers. How many can she put in the red vase and how many in her blue vase? $5 =$ 0+5, $5+0$, $5 = 1+4$, $5 = 4+1$, $5 = 2 + 3$, $5 = 3 + 2$
COMPARE	DIFFERENCE UKNOWN	BIGGER UNKNOWN	SMALLER UNKNOWN
	("How many more?" version):Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have then Julie? 2 + ? = 5, 5 - 2 = ?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?(Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 - 3 = ?, ? + 3 = 5

AWESOME NUMBER SENSE RESOURCES

Number & Numeration

Pre-K-

http://catalog.mathlearningcenter.org/apps/number-rack Number Rack for iPhone, iPad, and the Web

Electronic ten-five and ten frame

http://illuminations.nctm.org/

ĬŎŎ 36 37 38 41 42 43 44 45 46 47 18 51 52 53 54 55 56 57 61 62 63 64 65 66 67 68 0-99 1-100 71 72 73 74 75 76 77 78 79 81 82 83 84 85 86 87 88 89 t X

Electronic 100s chart: http://www.abcya.com/interactive _100_number_chart.htm 18

http://illuminations.nctm.org/ (awesome k-5 CCSS math activities)

AWESOME NUMBER SENSE RESOURCES

Number & Numeration Pre-K-

Electronic 100s chart: http://www.abcya.com/interactive _100_number_chart.htm

Number Rack for iPhone, iPad, and the Web

http://catalog.mathlearningcenter.org/apps/number-rack

Electronic ten-five and ten frame

http://illuminations.nctm.org/

http://illuminations.nctm.org/ (awesome k-5 CCSS math activities)

Copy on yellow Bristol paper

.

Copy on blue Bristol paper

Number Ten Frames O to 20 Polka-Dot Border in Red

Jennifer Tilton www.kindertrips.blogspot.com

Graphics From the Pond http://frompond.blogspot.com

Background Paper: www.allfulloflove.etsy.com

Recording Sheet Directions: Teacher would give a number to the students to represent on the rekenrek with two pushes. Students draw they way they would represent that number. Then students would write math statements to match. Have students verbally share with a partner their work/how they know what they know.

Name _____ Date _____

Recording Sheet Directions:

Recording Sheet Directions:

Recording Sheet Directions:

Name _____ Date _____

2.

Recording Sheet Directions:

١.

4.

6.

5.

7.

Name _____ Date ____

١.

Recording Sheet Directions:

2

L .	

3.

5.

2.

6.

١.

0	01	20	30	0 1	50	60	70	80	ОР	100	110
	٩	٩	29	39	Чq	59	69	79	89	٩٩	109
	8	18	28	38	48	58	68	78	88	98	108
	7	17	27	37	Ч7	57	67	77	87	۹7	107
	6	16	26	36	46	56	66	76	86	96	106
	പ	15	25	35	45	55	65	75	85	95	105
		Ť	24	3 H	μ	54	64	74	84	٩H	104
	3	13	23	33	Η3	53	63	73	83	93	103
	2	12	22	32	42	52	62	72	82	۹2	102
	—		21	31	Ŧ	51	61	71	81	Ь	101

0	10	20	30	40	50	60	70	80	ОР	100	011
	٩	Р	29	39	Чq	59	69	٦q	89	٩٩	P01
	8	18	28	38	48	58	68	78	88	98	108
	7	17	27	37	Ч7	57	67	77	87	٩7	107
	6	16	26	36	46	56	66	76	86	9 b	106
	പ	15	25	35	45	55	65	75	85	95	105
		Ŧ	24	34	μΨ	54	64	7 4	84	٩H	104
	3	13	23	33	μ3	53	63	73	83	٩3	103
	2	12	22	32	42	52	62	72	82	۹2	102
	—		21	31	Ŧ	51	61	71	81	Ь	101

12		H	7	M	4	Ŋ	9	~	∞	σ	10	11	12
11	11		H	N	m	4	Ŋ	9	~	ω	σ	10	11
10	10	10		1	2	m	4	IJ	9	7	Ø	6	10
6	6	6	6		1	2	M	4	ß	9	2	Ø	6
Ø	8	8	ω	Ø		1	2	M	4	Ŋ	9	2	8
~	٢	2	2	2	2		1	2	M	4	ß	9	7
9	9	9	9	9	9	9		1	7	M	4	ß	9
Ŋ	ß	ß	Ŋ	ß	ß	ß	IJ		1	2	M	4	Ŋ
4	4	4	4	4	4	4	4	4		1	2	M	4
M	M	M	m	M	m	m	m	M	m		1	2	m
7	2	2	И	N	N	И	И	7	2	И		T	7
H	H	T	H	T	H	T	H	H	H	T	H		-
		•											

Expected Time (5–15 min.)	Quick Look Display options: dot cards on ConnectED, printed cards from lesson, Additional Options: Number Talks PPT on portal, ten frames, Rekenreks
6	without counting. Quick Looks are a mental math activity students decompose quantities in to parts in different ways bly .
Establish Math Talks Expectations	 MAC/CHAMPS Refer to Turn and Talk Anchor Chart Refer to Classroom Discourse Anchor Chart
Flash Quick Look Card for 3	provide WAIT time
seconds	 when students know how many, they show a quiet thumb-up
	 if a student is a "fasty", they can show you a second way by holding up another finger
Ask whole class to	listen for consensus/errors
whispers their solution	
Record total (number of dots)	 avoid verbal or physical expressions that indicate agreement or disagreement
Students Turn and Talk	 ask shoulder or "peanut/butter and jelly partners to each have a turn to explain how they know the total number of dots
	 walk around and listen – this will help make decisions for whole class sharing
	• ask students to share how their partner's solution
Record Individual	call on 3-4 students/partnerships
Student thinking *Math Practices:	 After each share, ask the class, who else solved it "Toni's" way? who solved it a different way?
	 allow students to interact with the Quick Look Card by drawing on it, point with a laser etc.
	 label each Strategy (1, 2, 3 etc. or by names)
	 record using number model starting with total number of dots (8=5+2+1)
	 if you restate the share solution, ask Is this right? Is this how you saw it?

