Developing ELLs' Understanding of Both Mathematics and Language

Through Professional Development for Elementary Mainstream and ESOL Teachers

April 16, 2016
Galina (Halla) Jmourko, Prince George's County Public Schools, MD
Rodrigo J. Gutiérrez, Ph.D., University of Maryland

NATIONAL COUNCIL OF
TEACHERS OF MATHEMATICS

FVerenen

Galina (Halla) Jmourko ESOL Coach, PGCPS, MD
Jmourko@pgcps.org

Rodrigo J. Gutiérrez Clinical Assistant Professor, UMD

rodrigog@umd.edu

ESOL Enrollment Data as of August 18, 2015

Five Good Reasons to Become a TODOS Member!

- Targeted and ongoing support in your efforts with students.

Complimentary and sustained professional development.
High quality and rigorous mathematics emphases for ALL students.

- Engagement with a community of learners at all levels of

Mathematics for ALL education.

Ideas to work with underserved students in mathematics.
Renew or Join online at http://www.todos-math.org
or by mail by downloading the application form from the todos-math.org website.

TODOS Booth

Visit the TODOS Booth in the
 Exhibit Hall, Booth \#544

Renew or Join online at http://www.todos-math.org or by mail by downloading the application form from the todos-math.org website.

TODOS 2016 Conference is co-sponsored by NSF-funded Arizona Master Teachers of Mathematics (AZ-MTM), award \#1035330

Warm-up: Share successes and challenges with PD opportunities on Mathematics for ELLs in your district?

- Information/Content
- PD Structure
- Instructional Strategies
- Language Supports
- Follow-up on Implementation

Session Agenda

- Introductions
- ESOL - UMD Focus Group: A Unique Partnership
- Exploration with Instructional Tools
- ESOL - UMD Focus Group: Results
- Closure and Questions

Session Outcome:

Participants will leave with actionable take-aways for developing ELLs' language and mathematics

Previous Isolated PD Efforts

- Prince George's County Public Schools

Book Study - Based PD: 4-6 paid evening sessions (prior to 2013-14) Focus Group 2013-14: 4 half-day sessions on Discourse for ELLs Need: More research-based mathematical pedagogy

- Center for Mathematics Education, UMD

Outreach Courses: Graduate evening courses for practicing teachers with a focus on both content and pedagogy Need: More authentic connections to the classroom and local contexts for working with English Language Learners

PGCPS ESOL- UMD Partnership: Context and Rationale

- Growing numbers of ELLs

OVERLAPPING KNOWLEDGE FOR TEACHING MATHEMATICS TO ENGLISH LANGUAGE LEARNERS

wİDA
 English Language Development Standards

Standard 1: Social and Instructional Language
 Avets
Standard 3: The Language of Mathematics
Standard 4: The Language of Science
Standard 5: The Language of Social Studies

WIDA: World Class Instructional Design and Assessment
www.wida.us

Teaching and Analyzing the Language of Mathematics

Discourse Complexity: extended oral \& written logically connected responses

Discourse Level

WIDA ACCESS Language Proficiency Levels

WIDA CAN DO Descriptors

Figure 5M：CAN DO Descriptors for the Levels of English Language Proficiency，PreK－12
For the given level of English language proficiency，with support，English language learners can：

	Level 1 Entering	Level 2 Beginning	Level 3 Developling	Level 4 Expanding	Level 5 Bridgling	$\begin{aligned} & \text { 霊 } \\ & \text { 覂 } \\ & \text { 膏 } \end{aligned}$
或	－Poink so stated pikzures． worde pleases －Follow one－step oral directions －March oral stavements roobjocrs，figures or illaserations	－Sort pictures objacts according to omal instractions －Follow rwo－step oral direations －Match information from oral descriptions to objocts，illustations	－Locave，selear，omier informanion froen oed descriptions －Follow multi－step ofal direations －Categorize or sequence oral information using pixuses，objects	－Comparelconeras fursetions，relarionships from oral informarion －Andlyse and apply oral informanion －Identify caus eand effecr from oral discourse	－Deaw condusions from oral information －Consarnct models based on oral discourse －Make connecrions from oral discourse	
毞	－Name objeces people． pictures －Answer WH－（wbo，what． when，where，whikls） questions	－Ask WH－questions －Describe pictures．events， objects people －Restane Eaces	－Formulare hyporheses mabe prodictions －Describe processes． procedures －Revell staries or events	－Discass stories issaes． concepes －Give speeches，oral reports －Offer creazive solutions so issues，problesas	－Engage in debares －Explain phenomera． give examples and jussify responses －Express and defend poines of view	
资	－Manch icons and aymbols $t 0$ words，phra ses or enviconumeneal prient －Idenrify concepres abour prine and vesar features	－Locave and dassify informar ion －Identify facas and explidi messages －Select language parterns a ssociared with Eaces	－Sequence picrures，evenes． processes －Idencily main ideas －Useconsear dues so devermine meaning of words	－Inserperer information or daxa －Find details that sappore main ideas －Identify mond fiamilies． figums of qpeech	－Conducr researds vo glean informarion from manaliple sources －Draw condusions from explicit and implicit texs	
号	－Label objects．pictures． dingeams －Drand in response to a prompt －Produce koes symbols． words plarases to convey messags	－Mabe lists －Produce drawings． phasaes，short sensences． notes －Give information requested from oral or writ ben dieections	－Prochace bare－bones exposto ry or narkative texts －Comparelooneras infornarion －Describe evenss，people． processes，peocedures	－Sumn naxize information from graphics or motes －Edir and mevise writing －Creare original ideas or devailed responses	－Apply information 80 new coneects －React to multiple gennes and discoumes －Asulkor meilsiple forms／ gentes of writing	

Variability ofstublents＇cognitive dovelopment dwe to age，grade le vel spans，thetr diversity of edwcational experiences and diagrosed learning disabilities（if applicable）are to be condidered in using this information．

Identifying What Carlos Can Do Overall LP Level: 3.6

Figure 5M: CAN DO Descriptors for the Levels of English Language Proficiency, PreK-12
For the given level of English language proficiency, with support, English language learners can:

	Level 1 Entering	Level 2 Beginning	Level 3 Developing	Level 4 Expanding	Level 5 Bridging	
	- Point to stated pictures. words, phrases - Follow one-step oral directions - Match oral statements to objects, figures or illustrations	- Sort pictures, objects according to oral instructions - Follow two-step oral directions - Match information from oral descriptions to objects, ilhastrations	- Locate, sdec, order information from oral descriptions - Follow multi-step oral directions - Categorize or Caflos oral information using pictures, objects	- Compare/contrass functions, rehationships from oral information - Analyze and apply oral information - Identify cause and effect from oral discourse	- Draw condusions from oral information - Construct models based on oral discourse - Make connections from oral discourse	
	- Name objects people, pictures - Answer WH- (who, what, when, where, which) questions	- Ask WH- questions - Describe pictures, events. objects, people - Restate facts	- Formulate hyporheses make predictions - Describe processes. procedures - Retell stories or events	- Discuss stories, issues, concep ts - Give speeches, oral reports - Offer creative solutions to issues, problems	- Engage in debates - Explain phenomena, give examples and justify responses - Express and defend points of view	
$\begin{aligned} & \text { u } \\ & \stackrel{y y}{\mid c} \\ & \underset{\sim}{4} \end{aligned}$	- Match icons and symbols to words, phrases or environmental print - Identify concepts about print and text features	- Locate and dassify in formation - Identify facts and explicir messages - Select language patterns associated with facts	- Sequence pictures, events, processes - Identify main ideas - Use contea dues to determine meaning of words	- Interpret information or data - Find details that support ma in ideas - Identify word families, figures of speech	- Conduct research to glean information from multiple sources - Draw condusions from explicit and implicit text Carlos	剖
$\frac{\text { v }}{\text { U }}$	- Label objects, pictures, diagrams - Draw in response to a prompt - Produce icons, symbols, words, phrases to convey messages	- Make lists - Produce dawings. phrases, short sentences. notes - Give information requested from oral or written directions	- Produce bare-bones exposito ry or narrative texts Carlos information - Describe events, people, processes, procedures	- Summarize information from graphics or notes - Edit and revise writing - Create original ideas or detailed responses	- Apply information to new contexts - React to multiple genres and discourses - Author multiple forms/ genres of writing	

OVERLAPPING KNOWLEDGE FOR TEACHING MATHEMATICS TO ENGLISH LANGUAGE LEARNERS

Engaging ELLs in Mathematical Discourse Focus Group

Structure, Components, Process:

- Participants: 25 mainstream and ESOL teachers (Gr. 2-6)
- 7 full-day PD sessions (September 2014 - May 2015)
- Mathematical Pedagogy component
- Language Development component
- Show-and-Tell small group AND whole group sharing:
>Implementation of new learning/strategy in the classroom
$>$ Evidence through classroom artifacts, student work, videos
> Feedback from colleagues
LOTS of research-based resources
- Planning time
* Personalized on-site support (planning, coaching, debriefing)

Focus Group in Action

What did it look like?
$>$ Environment with norms and expectations
$>$ Task-based and problem-solving approaches
$>$ Different formats for interaction
> Student work analysis
What did it sound like?
$>$ What did you notice about the mathematics?
$>$ What did you notice about the language development?
$>$ What can we anticipate students would \qquad ?
$>$ How does \qquad connect to \qquad ?
$>$ What can we do so that students can \qquad ?

What did it feel like?
$>$ Growing as problem-solvers and problem-posers
> Taking risks to experiment, share, collaborate

Mathematical Pedagogy Component Emphasizing Teaching Practices

- Problem Solving-based Mathematics
- Teaching Mathematics for Understanding
- Cognitively Guided Instruction (CGI)
- The Language of Area and Perimeter
- Number Sense Games
- Math Talk and Discourse Moves
- Questioning Patterns
- Writing
- Using Children's Literature for Teaching Mathematics

Cognitively Guided Instruction

- Problem Types and Student Strategies
- Addition/Subtraction; Multiplication/Division
- Videos of clinical interviews with children
- Videos of classroom instruction, student sharing, and group discussions

Difficulty of Addition and Subtraction Problems

Last page of CGI Chapter \#3

CGI Role Plays

Semantic vs.

Computational Interpretations

Mathematical Discourse: Productive Classroom Discussions

- Anticipating Student Responses
- Plan teacher reactions and questions
- Patterns of Questioning
- IRE, Funneling, and Focusing
- Talk Moves (Chapin, O’Connor, and Anderson, 2009)

1. Revoicing
2. Repeating
3. Reasoning
4. Adding on
5. Waiting

Language Development Component

Challenges in Teaching ELLs:

- Vocabulary
- Word Problems
- Discourse
- Cultural Differences

Language Learning Principles:

- Communicative
- Relevant
- Meaningful
- Purposeful

Language Development Supports for ELLs to Increase Comprehension and Communication

Environment	
- Welcoming Re stress-free Respectful of diversity High expectations Structures \& routines Thinking-focused (vs, answer-seeking) discourse Checks for understanding through multiple modalities Explicit instruction of specific language targets Participation and engagement techmiques Meaningful integration of games and learning centers	- Opportunities to apply knowledge and create problems or representation to further thinking - Task/Activity: - Accessible by all students - Multiple entry points - Relevant to students" life experiences and culture - Built on prior mathematical learning - High cognitive demand - Multiple strategies for solutions

Sensory Supports*	Graphic Supports*	Interactive Supports*	Verbal and Textual Supports
Real-life objects (realia) or concrete objects Physical models Manipulatives Pictures \& photographs Visual representations or models such as diagrams or drawings - Videos \& films Newspapers or magazines Gestures Total Physical Response (TPR) Physical movements Music \& songs	Graphs Charts Timelines Number lines Graphic organizers Graphing paper	In a whole group In a small group In pairs as a group (first, two pairs work independently, then they form a group of four) - With a partner such as Turn-andTalk - In triads, for ex. Problem- Solution Triads - Cooperative learning structures such as Think-Pair-Share Timed Pair Share, Rally Coach, Numbered Head's Together - Interactive websites or software With a mentor or coach	Labeling Use of stualents" native language Modeling Repetitions Paraphrasing Summarizing Guiding questions Clarifying questions Probing questions Leveled questions such as what? When? How? why? - Questioning prompts \& cues Word Banks Sentence starters Sentence frames Discussion frames Accountable Talk moves, including Wait Time

Examples of Language Supports

- Concept-Related Word Bank
- Sentence Frames

Purpose:

Support ELLs' communication when
explaining, justifying, or reasoning
perimeter, distance, around, opposite sides, equal sides area, space inside

This is how we justify:

- Because we know that
- We know that That's why
- If there fore

Exploration of Instructional Tools

- Cubing Game
- $2 x 2$ Sentence Builders
- Three-Way Tie Graphic Support
- Problem-Solution Space

Discussion Prompts

- Make Sense of the Tool
- Benefits for Mathematical Knowledge and Skills
- Benefits for Developing Language
- Other Benefits/Considerations
- Applications

Make sure to consider CCSS for Mathematical Practices!
Be prepared to share with the whole group!
(10 min.)
(10 min.)

Cubing Game: Looking at a Concept from Different Perspectives

Define

Compare
Contrast

PERCMETER G AREA

Describe

Perimeter $=$
18 cm

Connect/Associate

2x2/3x3 Sentence Builders

Three Way Tie Graphic Support

Problem-Solution Placemats

Manuel saw some birds this week. He saw 2 blue jays on Monday, 5 cardinals on Tuesday, then again 4 blue jays on Wednesday, and again 7 cardinals on Thursday. On Friday, Manuel saw 6 blue jays.

If the pattern continues, what is the number and type of bird Manuel will see on Saturday?

CCSS Mathematical Practice (What Students Do)	NCTM Mathematics Teaching Practices (What Teachers Do)
1) Make sense of problems and persevere in solving them*	- Establish mathematics goals to focus learning
2) Reason abstractly and quantitatively	- Implement tasks that promote reasoning and problem solving
3) Construct viable arguments and critique the reasoning of others*	- Use and connect mathematical representations*
4) Model with mathematics*	- Facilitate meaningful mathematical discourse*
5) Use appropriate tools strategically	- Pose purposeful questions*
6) Attend to precision*	- Build procedural fluency from conceptual understanding
7) Look for and make use of structure	- Support productive struggle in learning mathematics
8) Look for and express regularity in repeated reasoning	- Elicit and use evidence of student thinking

Our Take-Aways

- Instructional Tools have explicit language focus (vocabulary, sentences, oral skills) AND support development of mathematical ideas
- Classroom implementation of Tools create opportunities for students to practice $L / S / R / W$ and the CCSS Mathematical Practices.
- Teachers may not instinctively turn to these tools for mathematics instruction
- Need models and experience before experimenting
- Importance professional decisions to coordinate the Tools with appropriate Tasks.

ABC Taxonomy: Tracking New Learning

Nuenwe $A B C$ Taxonomy: Strategles
A
Cehunking the problem
D
environment
(2)
F fishbowl apaceme
G
H
I
games
H
I
J
K
M
modeling: multiple entry points

Supports, Practices to Engage ELls N
O
P paraphrasing
Q
R repetitions

T talk a bact it, tellinyeroun wod

Session 1

ABC Taxonomy: Tracking New Learning

Teacher Journaling

Reflecting on Teaching Practices \qquad

Rationale

Math Strengths/Challenges:
Language Strength/Challenges:
Participation/Attitudes/Motivation:

(Created by Galina (Halla) Jmourko, ESOL Teacher Coach, PGCPS)

Results

- Growth in Teacher Collaboration and Leadership
- Shifts in Classroom Norms and Instructional Strategies
- New Noticings About Practices and Students' Abilities
- Multiple Lenses: Language, Mathematics, Environment
- Shifts in Teacher Beliefs of and Knowledge for Teaching Math to ELLs

Results in the Classroom: Student Discourse

Unit: Planning a Party on a Budget of \$100

Closure: Teaching Shifts

What was your instruction like BEFORE the focus group?	What insights have you gained through your participation in the focus group in terms of math pedagogy and the language of mathematics?
What remains the same in your instruction now? Why?	What is different in your instruction now? Why? Please provide specific examples from the classroom.
What do you feel would be your next steps (professionally or instructionally) in the nearest future?	

Teaching Shift:

One Teacher's Journey

What was your instruction like BEFORE the focus group?

- Instruction was narrow and disjointed
- Teaching the way I was taught
- Strategies all over the place
- Without research-based purposes

What remains the same in your instruction now?
Why?

- Inability to promote small groups needs to improve
- Lack of time
- Interruptions in the classroom
- Too narrow a focus

> What INSIGHTS have you gained through your participation in the focus group in terms of math pedagogy and the language of mathematics?
> - Research-based teaching strategies to encourage student discourse
> - Anticipating students' knowledge
> - Accepting all ways of completing a problem
> - (Children's) Literature connections

What is DIFFERENT in your instruction now? Why? Please provide specific examples from the classroom.

- Research-based mathematical discourse strategies
- New knowledge and strategies to experiment with in the classroom
- Developing math vocabulary
- Questioning techniques: Withhold the Question; Paraphrasing; Focusing vs Funneling
- (Writing Strategies) Admit/Exit cards, journal writing, Quick writes, creative stories, pen pals, cubing

What do you feel would be your NEXT STEPS (professionally or instructionally) in the nearest future?

- Continue learning about mathematical discourse and exchange of knowledge in the classroom
- Continue professional development...so I will not teach the same way and become stagnant and revert to old methods
- Focusing on questioning
- Expanding knowledge of the $4^{\text {th }}$ grade curriculum
- Joining NCTM

Successes and Considerations

Successes:

- Design and implementation of the PD
- Working with teachers in their classrooms
- OUR collaboration is being recognized!
- Opportunities to share our knowledge and experience with educators

Considerations:

- Role of Principals
- Transiency of teachers: grades, subjects, schools
- Personalized on-site support to a large number of FG participants

THANK YOU!

Feel free to contact us for more information, resources, etc.

Galina (Halla) Jmourko: jmourko@pgcps.org

Rodrigo Gutiérrez: rodrigog@umd.edu

