It's All About That Base: Creatively Connecting Fractions and Decimals

Christy Pettis cpettis@umn.edu

Bethann Wiley BWiley@winona.edu

Pamela Richards Richardsp1665@gmail.com

NOTES

Base-X Positional Representations

1. Find the missing representations. **Do the movements related to each number represented!**

Base-10 number representation	Base-5 number representation	Base- 5 movement representation
78 _{TEN}		3 snaps, 0 claps, 3 steps
		4 snaps
124 _{TEN}		
126 _{TEN}		
		1 spin, 1 snap, 1 step
	2012 _{FIVE}	
	$1000_{ m FIVE}$	
		"The largest number you can create with the moves you have"

2. Complete the following for different bases (10, 3, 5, and 7).

Base- 10 number representation	Base- 3 number representation	Base- 5 number representation	Base- 7 number representation
	102 _{THREE}		
		102 _{FIVE}	
			102 _{SEVEN}

Extension: Which is larger, 42_{FIVE} or 112_{THREE} ? Can you *determine* and *justify* the answer without using base-10 numbers?

<u>cpettis@umn.edu</u> 2

"X-imals"

Symbols	Words	Picture
23.5 _{SIX}		
23.5 _{еібнт}		
222.22 _{FOUR}		
	2 groups of 9, 0 groups of 3, 2 ones, 2-thirds, and 3-ninths	

Connecting Fractions and X-imals

Find ½ as an X-imal in each base

Base 6
Base 8
Base 10
Base 5

<u>cpettis@umn.edu</u> 4

Picturing Different Fraction and Decimal Notational Forms

3 loaves of bread shared by 4 people		

Connecting Symbols and Pictures

For each situation, draw a picture that shows the amount of bread for each person's fair share in a way that matches the different symbol systems.

1 loaf shared by 4 people

1 loar shared by 1 people		
The standard fraction way	The decimal way	
The base 5-imal way	Another way (your choice)	

2 loaves shared by 6 people

The standard fraction way	The decimal way
The base 5-imal way	Another way (your choice)

3 loaves shared by 7 people

5 loaves shared by 7 people		
The standard fraction way	The decimal way	
The base 5-imal way	Another way (your choice)	

Egyptian Fraction	G M A W G A W M	1/2 + 1/4	 All numerators are 1 No denominator repeated
Standard Fraction	G A W M G A W M	3/4	Each person gets one piece from each loaf
Decimal	G A W M G A W M G A	0.25	Only allowed to make pieces that are powers of 10 "You must always cut into 10 pieces"
X- <u>imal</u>	A W X A	0.33 _{FIVE}	Only allowed to make pieces that are powers of X "You must always cut into X pieces"

More Explorations with X-imals

Exploration 1	Exploration 2
Find:	
• 1/3 in base 4	Find $\frac{1}{2}$ in base 2, 3, 4, 6, 7, etc. What
• 1/6 in base 7	do you notice? Can you determine
• 1/5 in base 6	what ½ will be in base-N?
What do you notice? Why?	
Exploration 3	Exploration 4
Find: • 1/3 in base-7 • 2/9 in base-10 What do you notice? Why?	In base-6, which fractions terminate? Which repeat? Can you find a way to predict if a fraction will terminate or repeat in base-6 without doing the division?