Race, Learning Attitudes and Achievement:

An Inequitable Triad

James Martinez October 27, 2016 James Martinez, Ed.D.

California State University, Channel Islands

2016 NCTM Regional Conference

Latino Struggles Dramatization

Courtesy of Novelas Educativas and the National Council for Community and Education Partnerships (2011) https://www.youtube.com/v/N9IC7aczAaE?version=3&start =169&end=280&autoplay=1&hl=en_US&rel=0

The Problem

Percentages and Benefits

As of June of 2012 . . .

- 19% of Latinos 26 or older have college degrees, compared to 40% of all adult US citizens
- The U.S. is ranked 12th in the world in percent of adults with college degrees
- If 60% of U.S. Latinos obtain college degrees, the net tax revenue increase is estimated to increase \$3,000,000,000/year

Reference: Frank Alvarez, CEO of HSF, http://www.youtube.com/watch?v=moH5knfxPI8

Research Questions

1) To what degree do psychosocial variables that affect mathematics achievement differ between Hispanic and non-Hispanic high school students?

Provided to psychosocial attitudes related to mathematics and race predict academic achievement for high school sophomores?

Literature Review I

External Factors - Out of Student Control

- •English language acquisition (Gasbarra & Johnson, 2008)
- •Inadequate academic instruction (Kawell, 2008)
- •Inequitable/rigid course assignment policies (Allen, 2002
- •Limited parent involvement (Greer, 2009)
- •Low family socioeconomic income (Gándara, 2009)
- •Contrasting sociocultural identity (Crisp, 2012)

Internal Factors - In Student Control

•**Epistemology** (Crotty, 1998; Baxter-Magolda, 2007; Pizzolato et al, 2009; Torres, 2004; Buehl & Alexander, 2005, Hidalgo, 2005)

Literature Review II

Epistemology - General

"the endeavor to determine the indubitable foundations of our claims to knowledge" (Cooper, D.E., 1999)

- Model of Epistemological Reflection (1992)
 - Ways of knowing are "socially constructed"
- Theory of Self–Authorship (2008)
 - Epistemological development was intertwined with (subject's) development of their sense of self and relationships with others

Epistemological Framework

(Crotty, 1998)

Research Design

"A quantitative measure of (epistemological data) has the potential to address a number of theoretical questions emerging from the research about self-authorship" (Creamer, Baxter Magolda and Yu, 2008)

Instrument: Education Longitudinal Study of 2002 (NCES)

- 45-minute, self-administered survey
 - demographic characteristics
 - high school experiences
 - work experiences
 - future plans
- Participants: Stratified, national probability sample
 - 16,197 students from 1,015 public and private high schools
- Timeframe
 - 2002: sophomores
 - 2004: seniors
 - 2005: transcripts obtained
 - 2006: 2 years out
 - 2012: 8 years out

Statistical Analyses

- Correlation
- T-Tests
- Chi-Square
- ANOVA
- Hierarchical LinearModeling
- Regression

Results of Data Analysis (Correlation) -all participants

Table 1.6

Correlation Summary Table Comparing Math Attitude Variables (N = 11294)

Variable	1	2	3	4	5	M	SD
1. Gets totally absorbed in math						2.49	.808
2. Thinks math is fun	.501**					2.79	.840
3. Mathematics is important	.456**	.682**				2.51	.890
4. People can be good at math	.236**	.275**	.308**			2.04	.690
5. Have to be born with math	013	027**	062**	305**		2.78	.826

$$p < .05 *p < .01$$

Correlation Coefficient Value/Range	Relative Strength
1	Perfect
0.7-0.9	Strong
0.4-0.6	Moderate
0.1-0.3	Weak
0	Zero

Results of Data Analysis (t-tests)

Table 1.1a

Comparison of Survey Responses of Hispanic and non-Hispanic Students Regarding Attitudes about Mathematics and Personal Mathematics Efficacy (n = 1540 Hispanic participants and n = 10,134 non-Hispanic participants)

Variable	M	SD	t	df	р	d
Most people can learn to be good at math			-2.787	11672	.005	-0.1
Hispanics	1.76	1.521				
non-Hispanics	1.88	1.539				
Have to be born with ability to be good at math			1.055	11672	.303	.04
Hispanics	2.61	1.837				
non-Hispanics	2.55	1.780				
Thinks math is fun			-4.472	11672	.000	-0.1
Hispanics	2.70	.824				
non-Hispanics	2.80	.842				
Mathematics is important			-3.945	11672	.000	-0.1
Hispanics	2.29	1.512				
non-Hispanics	2.44	1.357				

Results of Data Analysis (t-tests)

Table 1.1b

Comparison of Survey Responses of Hispanic and non-Hispanic Students Regarding Attitudes about Mathematics and Personal Mathematics Self-Efficacy (n = 1540 Hispanic participants and n = 10,134 non-Hispanic participants)

M	SD	t	df	р	d
		-3.606	11672	.001	-0.1
1.96	2.479				
2.18	2.250				
		-3.392	11672	.001	-0.1
1.74	2.592				
1.96	2.322				
	1				
		-2.709	11672	.007	-0.1
1.48	3.290				
1.71	3.026				
		-2.950	11672	.003	-0.2
1.37	3.661				
1.65	3.375				
	1.96 2.18 1.74 1.96 1.48 1.71	1.96 2.479 2.18 2.250 1.74 2.592 1.96 2.322 1.48 3.290 1.71 3.026	-3.606 1.96	-3.606 11672 1.96 2.479 2.18 2.250 -3.392 11672 1.74 2.592 1.96 2.322 -2.709 11672 1.48 3.290 1.71 3.026 -2.950 11672 1.37 3.661	-3.606 11672 .001 1.96 2.479 2.18 2.250 -3.392 11672 .001 1.74 2.592 1.96 2.322 -2.709 11672 .007 1.48 3.290 1.71 3.026 -2.950 11672 .003

Results of Data Analysis (Chi-Square Analyses)

Student Highest Math Course Taken versus Race

$$X^2 = 463.43$$
, df = 12, N = 12,964, $p = .000$

<u>Interpretation</u>: Students of different races are being differentially prepared in mathematics

Results of Data Analysis (ANOVA)

- The mean value for highest level of mathematics course taken for at least one semester
- Based on:
 - 1 = Pre-algebra, general or consumer math
 - 2 = Algebra I
 - 3 = Geometry
 - 4 = Algebra II
 - 5 = Trigonometry, pre-calculus, or calculus
- 5.44 for Asians
- 5.16 for Whites
- 4.95 for African Americans
- 4.81 for Hispanics
 - \circ F(3, 12960) = 109.23, <math>p = .000
 - Statistically significant!

Results of Data Analysis (ANOVA)

The mean value for <u>transcript grades</u> for sophomore participants taking Geometry is:

6.91 for Hispanics

- 6.62 for African Americans
- 6.54 for Whites
- 6.32 for Asians
- F(3, 4588) = 5.588, p = .001
- Interpretation: when Hispanic students are "on track", they achieve at higher levels than their non-Hispanic classmates.

F1C Grade Value	Student Transcript Grade
13	A+
12	А
11	A-
10	B+
9	В
8	B-
7	C+
6	С
5	C-
4	D+
3	D
2	D-
1	F

Results of Data Analysis (Hierarchical Linear Modeling)

Factors That Contribute to Highest Mathematics Course Completed (N=8972)

Example

Identifying as an Latino (Hispanic) became less and less a contributing factor when also considering math attitudes, but became more a factor when including work habits and forecasting ones educational attainment were considered. As these additive factors compiled, they became less statistically significant.

			Beta at Step*					
Step	Variable entering	1	2	3	4			
Block 1 -	Block 1 – Demographic Characteristics							
1	Asian	.067	.057	.044*	.040*			
2	African Amer.	.021*	.015*	.022	.016			
3	Hispanic	.023*	.019*	.022	.025			
4	White	.070	.071	.069*	.073*			
5	Gender	.008*	.014*	021	042**			
6	Parent educ.	.015*	.025*	.003	004			
7	SES	.146	.148*	.120**	.079**			
Block 2 -	Block 2 – Math Attitudes							
8	Gets absorbed		.003*	.007	.003			
9	Math is fun		043*	031*	021			
10	Math is import.		058	052**	028*			
11	People learn math		.014*	.013	.013			
12	Born with math		.014*	.005	.003			
Block 3 -	Block 3 – Work Habits							
13	Screentime			043**	030*			
14	Homework time			.049**	.028*			
15	Employment hrs.			068**	058**			
16	School activities			.079**	.053**			
Block 4 –Education Forecast								
17	Est. educ. Attain.				.187**			

Results of Data Analysis (Regression)

Employment

Activities

EducAttain

Highest mathematics course taken = 2.428 (Constant)

	riigiicacii	nathematics course
•	+.397	Asian
•	+ .147	Black
•	+ .219	Hispanic
•	+ .427	White
•	238	Gender
•	006	ParentEdu
•	+ .310	SES
•	+ .012	Absorbed
•	072	MathFun
•	091	MathImportant
•	+.053	PeopleLearn
•	+ .010	BornWMath
•	030	Screentime
•	+ .011	Homework

-.084

+.112

+ .388

For example, as SES is increased by one unit, a sophomore's highest mathematics course completed for at least one semester increases by 0.310, holding everything else constant.

F(17, 8972) = 46.761, p < .000, adjusted $R^2 = .08$. Statistically significant!

(Socioeconomic status combines mother's education, father's education, mother's occupation, father's occupation, and family income)

Ties to Literature Review

Epistemological *Self-Authorship* – "the capacity to take ownership of (student's) own internal authority" (Kegan, 1994; Baxter-Magolda, 2004)

"Theoreticians have defined Latino/a reality using an epistemology created out of the experience of Whites . . . as if such an epistemology wasn't based on living experiences" (Hidalgo, 2005)

Implications

- Math attitudes are important, but not everything (race, SES, forecasting as well as instruction, curriculum, materials, environment, etc.)
- Ameliorative Considerations
 - Mentor/Mentee Relationships Forecasting
 - Summer instruction for underrepresented minorities to advance tracks in mathematics (The Jaime Escalante Math Program, 1990)
- The Effects of Tracking
 - How do we know if URMs have reached their full potential in math given a reduced set of courses?

Suggestions for Further Studies

- Longitudinal comparisons with the same students as they matured in age (e.g. how many students changed their minds about "math being fun") based on ethnicity/race, SES, family composition, parent educational attainment, etc.
- Comparisons of student "math attitudes" to those of their parents, teachers, administrators and counselors

Thank You!

Any Questions?

Sample Characteristics: Gender

Sample Characteristics: Regions

Data Characteristics: School Types

Characteristics: Race/Ethnicity

Methodology - Quantitative

- Previously qualitative was used for studies with epistemological (self-authorship) theoretical framework
- "... a quantitative measure of self-authorship will add to the impetus for practitioners to create educational interventions targeted at promoting self-authored ways of reasoning (Creamer, Baxter Magolda and Yu, *Preliminary Evidence of the Reliability and Validity of a Quantitative Measure of Self-Authorship*, 2008, p.551).
- "relate your approach to your personal understanding and training" (Creswell, 2012, p. 20)

Immersion

http://www.snagfilms.com/films/title/immersion#