MAKING MATHEMATICS FAMILIAR: INCREASING INTEREST AND ACHIEVEMENT THROUGH CULTURAL RELEVANCE

Mark W. Ellis

California State University, Fullerton @ ellismathed
http://ellismathed.weebly.com
\qquad
\qquad
\qquad
\qquad
\qquad http://tacib.weebly.com

STEM Interest Declines from Middle School among All Students but..

- Female students' interest in STEM declines more than male students
- African American and Latino/a students report lower levels of interest in STEM than others
(Some) Reasons
- Lack of relevance, meaning
- Less opportunity for personal involvement
- Implicit Bias and Stereotype Threat
\rightarrow Less confidence in abilities; lower achievement

Aims of Culturally Responsive Mathematics Teaching

- Promote deep, meaningful mathematics learning
\qquad
- Value students' sense of identity
- Build on students' cultural assets
- linguistic and ethnic patterns of interaction
- aspects of familial and community knowledge and lived experiences
- "the behaviors, beliefs, and artifacts of the communities of the particular students in a particular classroom" (Ensign, 2003, p. 415)
- Expand students' sense of possibility
- Empower students to analyze issues and generate solutions

Funds of Knowledge/
 Culture or Community Support

How does my lesson help students connect the content with relevant/authentic situations?

1	3	5
No evidence of cultural/ community connection; "culturally neutral" context	At least one sustained example of connecting math to students' interests/culture /community	Intentional connections to interests/culture/ community throughout the lesson; Understanding of math and of culture/community are deepened, extended

From Aguirre \& Zavala, 2013 and TEACH MATH

$\begin{array}{l}\text { Power and Participation } \\ > \\ \text { > How does my lesson distribute math knowledge } \\ \text { authority, value student math contributions, and } \\ \text { address status differences among students? }\end{array}$				
1		3		5
$\begin{array}{l}\text { The authority of math } \\ \text { knowledge exclusively } \\ \text { resides with the } \\ \text { teacher who has the } \\ \text { final word about } \\ \text { correct answers. } \\ \text { Student math } \\ \text { contributions are } \\ \text { minimal. Status } \\ \text { differences are } \\ \text { evident. }\end{array}$	$\begin{array}{l}\text { The authority of math } \\ \text { knowledge between } \\ \text { teacher and students } \\ \text { is sporadically shared. } \\ \text { At least one instance } \\ \text { where multiple } \\ \text { contributions are } \\ \text { accepted and valued. } \\ \text { At least 1 strategy to } \\ \text { minimize status } \\ \text { differences. }\end{array}$	$\begin{array}{l}\text { The authority of math } \\ \text { knowledge is widely } \\ \text { shared between teacher } \\ \text { and students. } \\ \text { Mathematical contributions } \\ \text { are actively elicited from } \\ \text { students and all are } \\ \text { valued. Multiple strategies } \\ \text { to minimize status among } \\ \text { students are evident. }\end{array}$		
From Aguirre \& Zavala, 2013 and TEACH MATH				

Use of Critical Knowledge/Social Justice - How does my lesson support students to use what we have learned as a vehicle to understand, critique, and change an important issue in their lives?		
3	5	
No evidence of connection to critical knowledge	There is at least one instance of connecting mathematics to analyze a sociopolitical/ cultural context.	Deliberate and continuous use of mathematics as an analytical tool to understand an issue/context, formulate math-based arguments to address the issues and provide substantive pathways to change/transform the issue.
From Aouirre \& Zavala, 2013 andTEACHMATH		

