Which one doesn't belong?

Describing patterns algebraically

Finding the next or finding the *n*th?

2016 NCTM Regional - Philadelphia, PA

Belinda Thompson and Erin McDonough 11/01/2016

Erin McDonough

Math Teacher at Alexandria Country Day School @McDonoughsMath emcdonough@acdsnet.org

Belinda Thompson

Math Instruction Expert at LearnZillion

@teachingtweaks

belindathompson@learnzillion.com

Which one doesn't belong?

Do math together

How do you see this pattern growing?

- Describe **two** different ways you see it growing.
- Write a bunch of stuff down because somebody will be looking at your work!

I'm not sure **3-2-1** Sharing I added each time to which one I find the next one. used. **3 People** Work on the problem independently I can find any 2 Silent Passes term with my rule. Form a triad Pass your work to the right Jot notes: How is the approach the **same**? How is it **different**? Pass the work to the right again and jot **1** Discussion Where do you see "finding the next" and where do you see "finding the nth"?

How do you see this figure growing? How many Xs in the 27th figure?

Let's Share!

A recursive explanation (find the next)	A functional explanation (find the nth)	Another functional explanation
Add 3 to get the next	3n + 1	4 + 3(n-1)

What's the difference?

	Recursive rule	 Functional rule Find the <i>n</i>th "To find the 10th figure, I can multiply 2 times 10 and add 4" 	
	Find the next		
Sounds like	"I added two to this one to get the next one"		
Looks like	x x x x x x x x x x x x x x x x x x x	$\frac{2n}{n + of x}$ $\frac{1}{2} + \frac{2 - 1}{2}$ $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	

How do you see this figure growing?

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

- What's going on here?
- How does this fit or not fit?

The connection between recursive and functional.

Figure #	Total Xs	
1	6	6
2	8	6 + 2
3	10	(6 + 2) + 2
4	12	((6+2) +2) + 2
n	2n + 4	6 + 2 (n - 1)

		X
	X	x
X	X	x
X	X	X
XXXX	XXXXX	XXXXXX
Figure 1	Figure 2	Figure 3

The connection between recursive and functional.

Tecuisi	ve allu			
Figure #	Total Xs		لكالكالكالكالكالكا	لقالقالفالفالفالفالف
1	4	4 or (1 + 3)		
2	7	4 + 3		
3	10	(4 + 3) + 3		
4	13	((4 + 3) + 3) + 3		
n	3n + 1	4 + 3 (n - 1)		17

Х

1

So what?

- Engagement
 - Students enjoy them and often want more challenging ones
- Discourse
 - Students have to make and defend claims
- Low floor, high ceiling
 - Multiple entry points usually begin with counting
- Many perspectives on "How does this pattern grow?"
 - Recursive thinking is allowed and
 - Functional expressions all simplify to the same expression

Connections to other topics

Not a lot of explicit mention in CCSS G6-8 about patterns so we may think it's not important or useful :(

- Proportional relationships
- Slope
 - ∘ y=mx+b
 - Easier for students to get a sense of slope as "for every change of 1 in x, y changes by m (we can see this in the recursive relationship
- Functions
 - Functions are defined by expressions
 - This might make for a smoother transition to functions

Practical tips for the transition from recursive thinking to functional thinking

- Don't discourage recursive thinking. It's the entry point!
- Do lots of drawing!
 - Draw the next and draw the 27th
 - What's changing and what's not?
- Teach them how to organize their thinking when they become disorganized.
- Look for and describe the connections
 - Between recursive rule and functional rule
 - Between different forms of the functional rule
- Do these often!

Which one doesn't belong?

Thank you! Please keep in touch!

Math Teacher at Alexandria Country Day School @McDonoughsMath emcdonough@acdsnet.org

Belinda Thompson

Math Instruction Expert at LearnZillion

@teachingtweaks

belindathompson@learnzillion.com ²²