Which one doesn＇t belong？

目
 目

 $9,13,17,21$

Describing patterns algebraically

Finding the next or finding the n th?

2016 NCTM Regional - Philadelphia, PA
Belinda Thompson and Erin McDonough 11/01/2016

Erin McDonough

Math Teacher at Alexandria Country Day School
@McDonoughsMath emcdonough@acdsnet.org

Belinda Thompson

Math Instruction Expert at LearnZillion
@teachingtweaks
belindathompson@learnzillion.com

Which one doesn＇t belong？

目
 目

 $9,13,17,21$

Do math together

How do you see this pattern growing?

- Describe two different ways you see it growing.
- Write a bunch of stuff down because somebody will be looking at your work!

3-2-1 Sharing

3 People

- Work on the problem independently

2 Silent Passes

- Form a triad
- Pass your work to the right
- Jot notes: How is the approach the same? How is it different?
- Pass the work to the right again and jot

1 Discussion

- Where do you see "finding the next" and where do you see "finding the nth"?

I'm not sure which one I used.

How do you see this figure growing？ How many Xs in the 27th figure？

囚	匈	$\begin{aligned} & \boxtimes \\ & \begin{array}{l} \boxtimes \\ \boxtimes \end{array} \end{aligned}$	冈冈冈区

Let's Share!

A recursive explanation (find the next)	A functional explanation (find the n th)	Another functional explanation
Add 3 to get the next	$3 n+1$	$4+3(n-1)$

What's the difference?

	Recursive rule	Functional rule
	Find the next	Find the nth
Sounds like...	"I added two to this one to get the next one"	"To find the 10th figure, I can multiply 2 times 10 and add 4"
Looks like...		$2 n$ n 4 of x 1 $2 \rightarrow-4$ 2 $4 \rightarrow+4$ 3 $6 \rightarrow+4$

How do you see this figure growing?

		x
	x	x
x	X	X
x	X	X
XXXX	xxxxx	X X X X X
Figure 1	Figure 2	Figure 3

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

Student work from Erin's class

- Where do you see recursive thinking?
- Where do you see functional thinking?

- What's going on here?
- How does this fit or not fit?

$\begin{aligned} & x \\ & x \\ & x \times x>x \end{aligned}$	$\begin{aligned} & \mathscr{Q} \\ & x \\ & x \\ & x \times x \times 8 \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \times x \times x \times x \\ & x \end{aligned}$
Figure 1	Figure 2	Figure 3
	$(n+3)+(n+1)$	

The connection between recursive and functional.

Figure \#	Total Xs	
1	6	6
2	8	$6+2$
3	10	$(6+2)+2$
4	12	$((6+2)+2)+2$
\cdots		\cdots
n	$2 n+4$	$6+2(n-1)$

$$
\mathbf{x} \times \times \times \times
$$

```

Figure 1

\section*{X
X
X}
\(\mathbf{X X X X X}\)
Figure 2

Figure 3

\section*{The connection between recursive and functional.}
\begin{tabular}{|c|c|c|}
\hline Figure \# & Total Xs & \\
\hline 1 & 4 & 4 or (1 + 3) \\
\hline 2 & 7 & \(4+3\) \\
\hline 3 & 10 & \((4+3)+3\) \\
\hline 4 & 13 & \(((4+3)+3)+3\) \\
\hline \(\ldots\) & & \(\ldots\) \\
\hline n & \(3 n+1\) & \(4+3(n-1)\) \\
\hline
\end{tabular}

\section*{So what?}
- Engagement
- Students enjoy them and often want more challenging ones
- Discourse
- Students have to make and defend claims
- Low floor, high ceiling
- Multiple entry points usually begin with counting
- Many perspectives on "How does this pattern grow?"
- Recursive thinking is allowed and
- Functional expressions all simplify to the same expression

\section*{Connections to other topics}

Not a lot of explicit mention in CCSS G6-8 about patterns so we may think it's not important or useful :(
- Proportional relationships
- Slope
- \(y=m x+b\)
- Easier for students to get a sense of slope as "for every change of 1 in \(\mathrm{x}, \mathrm{y}\) changes by m (we can see this in the recursive relationship
- Functions
- Functions are defined by expressions
- This might make for a smoother transition to functions

\section*{Practical tips for the transition from recursive thinking to functional thinking}
- Don't discourage recursive thinking. It's the entry point!
- Do lots of drawing!
- Draw the next and draw the 27th
- What's changing and what's not?
- Teach them how to organize their thinking when they become disorganized.
- Look for and describe the connections
- Between recursive rule and functional rule
- Between different forms of the functional rule
- Do these often!

\section*{Which one doesn＇t belong？}

\section*{目 \\ 目 \\  \\  \\ \(9,13,17,21\)}


\section*{Thank you! Please keep in touch!}


Erin McDonough
Math Teacher at Alexandria Country Day School
@McDonoughsMath emcdonough@acdsnet.org


\section*{Belinda Thompson}

Math Instruction Expert at LearnZillion
@teachingtweaks
belindathompson@learnzillion.com```

