Teaching About Regression Before AP Statistics Ruth Wunderlich

NCTM Philadelphia November 2016
RuthEllen@me.com
(717) 380-7023

Lititz, PA
This is a collaborative graded assignment.
You are expected to work on the problems together and hand in your own paper.
Clearly communicate your steps and explain your process. Do your work on a separate sheet of paper. You may include this sheet as a cover sheet.

1) Calculate the least square estimator of the following set of numbers:
$\{4,7,8,13,27\}$
a) Create a function $f(x)$ equal to the sum of the squares of the differences from x .
b) Identify the value of x that minimizes the sum of the squares of the differences. Present an algebraic solution.
2) Generalize the least square estimator of the set of numbers:
$\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \mathrm{x}_{\mathrm{n}}\right\}$ Name the solution, and write it using summation notation.
3) Find the least squares regression line in the form $y=k x$ for the following points: $(1,1),(1,2),(3,2)$ and $(4,5)$. Make a graph showing the points and your calculated regression line on the same coordinate grid.
4) Generalize the least squares regression line in the form $y=k x$ for n points: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$. Use summation notation to indicate a formula for k, the slope of the regression line.
5) Calculate the balance in an account when $\$ 25$ is invested at 100% annual interest, compounded 10,000 times every year, after 1 year, after 4 years, after 6 years and after 7 years. Use these points, and find a best-fit model for the balance in the account as a function of year using transformed data and linear regression.
6) Notes on the slope (b) of the actual regression line. $\hat{y}=a+b x$
7) Calculate the least square estimator of the following set of numbers: $\{4,7,8,13,27\}$
a) Create a function $f(x)$ equal to the sum of the squares of the differences from x.
b) Identify the value of x that minimizes the sum of the squares of the differences. Present an algebraic solution.
a)

$$
\begin{aligned}
(4-x)^{2} & =16-8 x+x^{2} \\
(7-x)^{2} & =49-14 x+x^{2} \\
(8-x)^{2} & =64-16 x+x^{2} \\
(13-x)^{2} & =961-26 x+x^{2} \\
(27-x)^{2} & =729-54 x+x^{2} \\
f(x) & =1819-118 x+5 x^{2}
\end{aligned}
$$

2) Generalize the least square estimator of the set of numbers: $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$ Name the solution, and write it using summation notation.

$$
\begin{aligned}
\sum\left(x_{i}-x\right)^{2} & =\sum\left(x_{i}^{2}-\left(2 x_{i}\right) x+\sum x^{2}\right. \\
& =\sum x_{i}^{2}-\left(2 \sum x_{i}\right) x+\sum x^{2} \\
& =n x^{2}-\left(2 \sum x_{i}\right) x+\sum x_{i}^{2}
\end{aligned}
$$

minimize

$$
x=\frac{2 \sum x_{i}}{Z_{n}}=\frac{\sum x_{i}}{n} \text {, the mean }
$$

3) Find the least squares regression line in the form $y=k x$ for the following points: $(1,1),(1,2),(3,2)$ and $(4,5)$. Make a graph showing the points and your calculated regression line on the same coordinate grid.

$$
\begin{aligned}
& \frac{\text { deviation }}{y-K x} \\
& (1,1)(1-k)^{2}=1-2 k+k^{2} \\
& (1,2)(2-k)^{2}=4-4 k+k^{2} \\
& (3,2)(2-3 k)^{2}=4-12 k+9 k^{2} \\
& (4,5)(5-4 k)^{2}=\frac{25-40 k+16 k^{2}}{34-58 k+27 k^{2}} \quad y=\frac{29}{27} x
\end{aligned}
$$

4) Generalize the least squares regression line in the form $y=k x$ for n points: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$. Use summation notation to indicate a formula for k, the slope of the regression line.

$$
\begin{aligned}
\sum\left(y_{i}-k x_{i}\right)^{2}= & \sum\left(y_{i}^{2}-2 x_{i} y_{i} k+x_{i}^{2} k^{2}\right) \\
& \sum y_{i}^{2}-2 k \sum x_{i} y_{i}+k^{2} \sum x_{i}^{2} \\
& \sum x_{i}^{2} k^{2}-2 \sum x_{i} y_{i} \cdot k+\sum y_{i}^{2} \\
& \text { minimize } V \\
k= & \frac{2 \sum x_{i} y_{i}}{2 \sum x_{i}^{2}}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \\
& y=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} x
\end{aligned}
$$

5) Calculate the balance in an account when $\$ 25$ is invested at 100% annual interest, compounded 10,000 times every year, after 1 year, after 4 years, after 6 years and after 7 years. Use these points, and find a best-fit model for the balance in the account as a function of year using transformed data and linear regression.

$$
\begin{aligned}
& \$ 25\left(1+\frac{1}{10,000}\right)^{10,000}=\$ 67.95 \quad(1,67.95) \\
& \$ 25\left(1+\frac{1}{10,000}\right)^{10000 \cdot 4}=\$ 1,364.20(4,1364.7) \\
& \$ 25\left(1+\frac{1}{10,000}\right)^{10000 \cdot 6}=\$ 10083.00(6,10083) \\
& \$ 25\left(1+\frac{1}{10,000}\right)^{10000 \cdot 7}=\$ 27,406.9(7,27406)
\end{aligned}
$$

$\log y \left\lvert\, \begin{aligned} & \log ^{\log y}=(434277 x+1.397919) \\ & 10\end{aligned} \quad \begin{aligned} 10 & =\left(10^{.434277}\right)^{x} \cdot 10^{1.397919}\end{aligned}\right.$
$x \quad y$

$$
\begin{gathered}
y=2.71817^{x} \cdot 24.99879 \\
y=\$ 25 e^{x} \nabla_{0}
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=P e^{r t}
$$

6) The slope of the regression line, $\hat{y}=a+b x$, can be written

$$
b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad b=r \frac{s_{y}}{s_{x}}
$$

Can you see $m=\frac{\Delta y}{\Delta x}$ in these formulas?
r is the correlation coefficient.
r measures the strength and direction of the linear relationship between two variables.
S_{y} is the standard deviation of the y values.
S_{x} is the standard deviation of the x values.
The LSRL contains the point, (\bar{x}, \bar{y}). If x is average we predict y to be average.

The slope of the regression line is the ratio of the standard deviations of the x and y values tempered by the strength of the linear relationship between x and y as measured by r, the correlation coefficient.

$$
b=r \frac{s_{y}}{s_{x}}
$$

This illustrates the statistical phenomenon of "regression towards the mean." If the x differs from the mean, we expect y to differ from it's mean but not by as much. Things are more often ordinary than they are extraordinary!

