Fractional Lava Lamps

Authors:Amanda Schantz – TUteach, Temple University, Philadelphia, PA and PCTM
Internship Program CoordinatorMargaret King – TUteach, Temple University, Philadelphia, PA and PCTM
Undergraduate Student RepresentativeElliot Bickel – TUteach, Temple University, Philadelphia, PA

Name/Grade level of course: Grade 6

Length: 3 class periods (This suggested length can be modified at teacher's discretion)

Appropriateness for Students:

As an interdisciplinary lesson, students will be subjected to scientific and mathematical concepts while collaborating with their classmates and thinking critically. Since this lesson contains a hands-on activity, students will be more invested than normal.

Concepts and Key Vocabulary Defined:

Fraction, Numerator, Denominator, Hypothesis, Density, Volume

Performance Objectives: Students Will Be Able To (SWBAT):

- Make predictions based on prior knowledge of fractions, volume, and density
- Observe minor chemical reactions
- Conduct their own experiments to develop conclusions
- Apply and extend previous understandings of multiplication and division to divide fractions by fractions

Common Core Math Standards:

CCSS.MATH.CONTENT.6.NS.A.1

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2/3) \div (3/4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4) = 8/9$ because 3/4 of 8/9 is 2/3. (In general, $(a/b) \div (c/d) = ad/bc$.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?.

Science Standards:

3.2.6.A1.

Distinguish the differences in properties of solids, liquids, and gases. Differentiate between volume and mass. Investigate that equal volumes of different substances usually have different masses.

Materials and Advance Preparations:

Plastic Vials, Food Coloring, Vegetable/Canola Oil, Alka-Seltzer Tablets, Paper Towels, Cups *Optional*: Science goggles and gloves - These are a preventative safety measure, potentially necessary depending on student ages. Use at teacher's discretion.

Supplementary Materials:

Lava Lamps Activity Worksheet

Safety:

Remind students not to put lids on the plastic vials while the chemical reaction is occurring - this could result in too much pressure causing the lid to pop off.

To prevent the food coloring from dying surfaces, remind students to lay down paper towels under the vials before beginning the experiment.

Remind students not to consume the ingredients.

SIOP:

Preparation

_X_Adaptation of Content _X_Links to Background _X_Links to Past Learning

X Strategies Incorporated

Integration of Processes _____Reading _X_Writing _X_Speaking _X_Listening Scaffolding _X_Modeling __Guided Practice __Independent Practice _X_Comprehensible Input

Application	Grouping Options	Assessment
_X_Hands-on	_X_Whole Class	_X_Individual
_X_Meaningful	Small Group	_X_Group
_X_Linked to Objectives	_X_Partners	_X_Written
_X_Promotes Engagement	Independent	_X_Oral

Engagement		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
KWL chart - Know and Want	What do we ALREADY KNOW about fractions? lava lamps? chemical experiments?	They are not whole numbers; they are portions of whole numbers. They are everywhere! Lava lamps work by the heat of a light bulb. You must be careful and pay attention with chemical experiments.
	How do lava lamps work?	Heat? Magic? Density? Chemical reaction?
	What do we WANT to know?	How do lava lamps use fractions? Why are we doing this? What is the point of this? How do lava lamps relate to math?
Introduce Key Terms and Vocabulary. Here, you should have the students tell you how they would define each term before revealing the definition. It might also	What is a fraction?	A way to write part of a whole. A number with a numerator and denominator.
be helpful for students to write these down so that they can reference them at any point or you may want to provide a handout with each	What is the numerator? What is the denominator?	The top number of a fraction. The bottom number of a fraction.

word and corresponding definitions for student reference after the key terms are introduced. This is of		The denominator must be greater than zero to be a proper fraction.
course at teachers' discretion.	What is a hypothesis?	An idea or educated guess. A science term for the unproved truth.
	What is density?	The weight of a liquid. The amount of liquid. Relationship to objects mass (m) and volume (V) (i.e. d=m/v)
	What is volume?	The amount of liquid. The amount of space in an object to hold liquid or gas. Volume is calculated by a formula specific to the object's shape.
Introduce lava lamps with	What do you think is	Color
pictures to show how cool	important to keep in mind	
they are.	when creating lava lamps?	Water
Also how, very generally,		
that this will be related to		Heat
fractions and you may want		
to point out important		Density
features to pay attention to		Volumo
amount of ingredients. etc.).		VUILIIU
		Directions
Note: We do not want		Mass
students caught up in the		IVIASS
as fluid-dynamics or intricate		Measurements
chemistry.		
Have students start preparing		
their first hypothesis and read		
over the provided outlined		
set of directions. Remind		
students to pay attention to		
the order in which the		
ingredients should be used.		
Encourage students to utilize		

their past knowledge of	
fractions. Also have each pair	
of students decide who is	
going to conduct the	
experiment first while the	
other student records	
observations. Note to	
students that they will switch	
and repeat.	
END CLASS PERIOD 1	

Exploration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 2 It's time to have students experiment with the lava lamps. Make sure each pair of students gets one or two vials, a cup of canola oil, a cup of water, one or two containers of food coloring, paper towels, and a packet of alka seltzer tablets. Students should have been given an outlined set of instructions the day prior that indicates the order in which the ingradiants should have	 Student directions for lava lamp activity instructions: Develop a hypothesis. Lay down paper towels and place your "ingredients" on top. Fill the vial with water. Add oil to the vial. You may have to wait for the oil and water to separate. Add food coloring. You can be creative here and make your own colors or you can 	
 the ingredients should be used. In this case, students will be challenge with understanding how much of each ingredient to use and how to apply simple fractions. The class will later be reflecting on what happened when the experiment did or 	 Add alka seltzer to the vial. Record your observations. 	

did not work well, so let them make lots of mistakes!

BUT be sure to explain to the students that you have given them all the materials they need to complete the experiment and that they must figure out how to do it. Remind students to fill in their worksheets.

Note: After the second time through if the students have not created a lava lamp start giving them hints.

FOR TEACHER USE ONLY (at this point): Actual lava lamp activity instructions:

- 1. Develop a hypothesis.
- 2. Lay down paper
- towels and place your
- "ingredients" on top.Fill the vial ¼ the way with water.
- 4. Add 2/4 (¹/₂) parts oil

 so that the vial is almost full but not completely. You may have to wait for the oil and water to separate.
- 5. Add 3-4 drops of food coloring. You can be creative here and make your own colors or you can keep them as they came.

6. Break one your alka seltzer into four pieces.

1. Develop a hypothesis before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add.

- 2. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here.
- 3. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?
- 4. Before trying the experiment again, please compare your process and results with another group. (For example, What did you do differently? What did you do the same? What worked? What didn't work?)
- 5. Then develop another hypothesis as you did in question 1.
- Switch roles with your partner and try the experiment again. Be sure to write your steps, amount of each

 7. Add one piece (¼ of a tablet) into the vial. 8. Record your 	ingredient used, and observations here.	
observations. For the science behind this reaction, please visit: http://www.sciencefun.org/ki dszone/experiments/lava-lam p/ END CLASS PERIOD 2.	7. It's time to reflect on the experiment again. What was different this time? Is there anything else you would change? Why or why not?	

Explanation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 3	Do any teams want to share what happened in their experiment?	Students should report observations (<i>for example,</i> <i>adding too much of an</i>
Now, discuss with the class what was found when experimenting with the lava		ingredient, what worked/didn't work)
lamps (for example, interesting results, what happened?, theories).	Suggested Guiding Questions:	
As the class reviews be sure they note different relationships between amounts of each ingredient	What happened when you added too much alka setzer?	The lava lamp bubbled over a lot. The lava lamp released a lot of gas.
In other words, it should become clear that each of the ingredients play different roles in the "lava lamp" reaction.	Did anyone notice a gas being released from the vial? Where did it come from? What other matters did we	The gas came from the alka seltzer tablet. A chemical reaction caused the alka seltzer to turn into a gas. The chemical reaction caused
Note: For more advanced classes, this is an opportunity	notice?	evaporation.
chemistry of the lava lamps and the reactions that are taking place during the experiment.	Did anyone add too much of another ingredient? What happened?	Solid.

	Did anyone add too little of an ingredient? What happened?	Too much oil, not enough water OR not enough oil, too much watervery little "lava lamp" effect was visible. Too much food coloring, not intended color (<i>for example,</i> <i>too much blue and not</i> <i>enough red is very deep</i> <i>purple</i>).
		We didn't add enough of anything and realized it was too smalldidn't work. Not enough alka seltzer, so it just looked like flat soda.
Next, link the math! Show	Now you're all probably	A whole.
them that they were actually	wondering, how does this	One.
playing with fractions!	Well, what do we think the	A part.
Start simple, if the vial is full it is a whole (or 1). If the vial is less than 1, it is a part or fraction	vial represents?	
	What do we mean by whole fractions and part fractions? What is the difference?	A whole is 1. A part is less than 1.
	So now, thinking back to our experiment, how do fractions relate to the lava lamps?	Each ingredient is a part. The vial is a whole. More than the vial makes an improper fraction. If the ingredients stay in the vial, it's less than a whole.
After discussing how	If we look at the vial as being	Use part fractions.
we can apply them.	divide the space to create a lava lamp?	1.
Start being saying, "If we	II	4
whole or 1 how can we	how many ingredients do we have?	4. (oil alka seltzer water food
divide the space to create a	11470:	coloring)

lava lamp?" In other words you're guiding the students to determine the fractional amounts of each ingredient. Demonstrate division on the board by drawing the vial.	If we put an equal amount of each ingredient how much of each ingredient would be put in?	The vial would be split into four equal parts. We would put in ¹ / ₄ of each. A quarter.
	Does ¼ of each ingredient result in a good lava lamp?	No, you don't need that much food coloring. Too much alka seltzer. Too much oil. Not enough water.
Provide students with actual measurements. Encourage students to brainstorm what the vial should actually look like and ask them to sketch a drawing. Then do it together as a class	How many parts do we think each ingredient should be? (<i>Have students discuss this</i> for a few minutes in their pairs, then regroup as class discussion.)	Various answers and reasoning.
demo on the board.	Good work everyone, here are the actual measurements.	We were close! We were way off, oops.

Elaboration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
While the students may be	Where do we think this	Making a cake.
enjoying themselves, they	applies in the real world? OR	Any food recipe.
might not understand how	How could what we did	Mixing paints.
this can be helpful in the real	today be used differently?	Chemistry Lab.
world, or how often they see		
fractions and don't know it.	Where do we see fractions in	Recipes.
By introducing ideas such as	the real world?	Clocks.
cooking or mixing paint,		Sport Fields.
students can discuss how		
fractions can make a big		
difference in the real world,		
just as they made a big		
difference in the outcome of		
the experiment.		

Evaluation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
Since this takes a few days,		
to save time, we suggest you		
evaluate your students by		
their recorded observations		
and completed worksheets.		

Attachments: Lava Lamps Activity Worksheet

Lava Lamps Activity Worksheet

Name:	

Date: _____

- Develop a hypothesis before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add. Hypothesis:
- 2. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here. Note: You do not have to use all the spaces provided.

Steps:

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

How much did you put in of each ingredient?

water?	
oil?	
alka selzter?	
food coloring?	

3. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?

4. Before trying the experiment again, please compare your process and results with another group. (*For example, what did you do differently? What did you do the same? What worked? What didn't work?*). Then develop another hypothesis as you did in question 1. Hypothesis:

5. Try the experiment again, but this time switching roles with you partner. Be sure to write your steps, amount of each ingredient used, and observations here. Steps:

11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	
20.	

How much did _____did you put in? water? _____ oil? _____ alka selzter? _____ food coloring? _____

-	
-	Once you have completed the experiment twice, please compare your steps and results between your first and second attempts. Describe the differences and develop a conclusion. What was the same?
	What was different and how was that important?
-	Conclusion:
-	

Fractional Lava Lamps

Authors:Amanda Schantz – TUteach, Temple University, Philadelphia, PA and PCTM
Internship Program CoordinatorMargaret King – TUteach, Temple University, Philadelphia, PA and PCTM
Undergraduate Student RepresentativeElliot Bickel – TUteach, Temple University, Philadelphia, PA

Name/Grade level of course: Grade 7

Length: 3 class periods (This suggested length can be modified at teacher's discretion)

Appropriateness for Students:

As an interdisciplinary lesson, students will be subjected to scientific and mathematical concepts while collaborating with their classmates and thinking critically. Since this lesson contains a hands-on activity, students will be more invested than normal.

Concepts and Key Vocabulary Defined:

Fraction, Numerator, Denominator, Hypothesis, Density, Volume

Performance Objectives: Students Will Be Able To (SWBAT):

- Make predictions based on prior knowledge of fractions, volume, and density
- Observe minor chemical reactions
- Conduct their own experiments to develop conclusions
- Apply and extend previous understandings of operations with fractions

Common Core Math Standards:

CCSS.MATH.CONTENT.7.NS.A.2

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

CCSS.MATH.CONTENT.7.NS.A.3

Solve real-world and mathematical problems involving the four operations with rational numbers.(Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

Science Standards:

3.2.7.A1.

Differentiate between elements, compounds, and mixtures. Identify groups of elements that have similar properties. Explain how materials are characterized by having a specific amount of mass in each unit of volume (density).

Materials and Advance Preparations:

Plastic Vials, Food Coloring, Vegetable/Canola Oil, Alka-Seltzer Tablets, Paper Towels, Cups *Optional*: Science goggles and gloves - These are a preventative safety measure, potentially necessary depending on student ages. Use at teacher's discretion.

Supplementary Materials:

Lava Lamps Activity Worksheet

Safety:

Remind students not to put lids on the plastic vials while the chemical reaction is occurring - this could result in too much pressure causing the lid to pop off.

To prevent the food coloring from dying surfaces, remind students to lay down paper towels under the vials before beginning the experiment.

Remind students not to consume the ingredients.

SIOP:

Preparation	Integration of Processes	Scaffolding
_X_Adaptation of Content	Reading	_X_Modeling
_X_Links to Background	_X_Writing	Guided Practice
_X_Links to Past Learning	_X_Speaking	Independent Practice
_X_Strategies Incorporated	_X_Listening	_X_Comprehensible Input

Application	Grouping Options	Assessment
_X_Hands-on	_X_Whole Class	_X_Individual
_X_Meaningful	Small Group	_X_Group
_X_Linked to Objectives	_X_Partners	_X_Written
_X_Promotes Engagement	Independent	_X_Oral

Engagement		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
KWL chart - Know and Want	What do we ALREADY KNOW about fractions? lava lamps? chemical experiments?	They are not whole numbers; they are portions of whole numbers. They are everywhere! Lava lamps work by the heat of a light bulb. You must be careful and pay attention with chemical experiments.
	How do lava lamps work?	Heat? Magic? Density? Chemical reaction?
	What do we WANT to know?	How do lava lamps use fractions? Why are we doing this? What is the point of this? How do lava lamps relate to math?
Introduce Key Terms and Vocabulary. Here, you should have the students tell you how they would define each term before revealing the definition. It might also	What is a fraction?	A way to write part of a whole. A number with a numerator and denominator.
be helpful for students to write these down so that they can reference them at any point or you may want to	What is the numerator?	The top number of a fraction.
provide a handout with each word and corresponding	What is the denominator?	The bottom number of a fraction.

definitions for student reference after the key terms are introduced. This is of		The denominator must be greater than zero to be a proper fraction.
course at teachers discretion.	What is a hypothesis?	An idea or educated guess. A science term for the unproved truth.
	What is density?	The weight of a liquid. The amount of liquid. Relationship to objects mass (m) and volume (V) (i.e. d=m/v)
	What is volume?	The amount of liquid. The amount of space in an object to hold liquid or gas. Volume is calculated by a formula specific to the object's shape.
Introduce lava lamps with	What do you think is	Color
pictures to show how cool	important to keep in mind	
they are.	when creating lava lamps?	Water
that this will be related to		Heat
to point out important features to pay attention to		Density
(such as volume, ingredients, amount of ingredients, etc.).		Volume
		Directions
Note: We do not want students caught up in the		Mass
as fluid-dynamics or intricate		Measurements
Have students start preparing		
their first hypothesis and read		
over the provided		
information. Remind students		
to think about the order in		
which the ingredients should		
be used and how much of		
each. Encourage students to		

utilize their past knowledge	
of fractions. Also have each	
pair of students decide who is	
going to conduct the	
experiment first while the	
other student records	
observations. Note to	
students that they will switch	
and repeat.	
END CLASS PERIOD 1	

Exploration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 2 It's time to have students	Student directions for lava: <i>Objective</i> : Create a "lava lamp" using the materials	
lamps. Make sure each pair of students gets one or two vials, a cup of canola oil, a cup of water, one or two	<i>Materials</i> : Canola oil, water, alka seltzer tablet, food coloring	
containers of food coloring, paper towels, and a packet of alka seltzer tablets.	Activity Worksheet Questions:	
Students should have been given very basic set of instructions the day prior that indicates the objective and provided materials. In this case, students will be challenged with	 Develop a hypothesis before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add and when. 	
understanding how much of each ingredient to use, what order to add them, and how to apply fractions. The class will later be reflecting on what happened when the experiment did or	2. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here.	

did not work well, so let them make lots of mistakes!

BUT be sure to explain to the students that you have given them all the materials they need to complete the experiment and that they must figure out how to do it. Remind students to fill in their worksheets.

FOR TEACHER USE ONLY (at this point): Actual lava lamp activity instructions:

- 1. Develop a hypothesis.
- 2. Lay down paper towels and place your "ingredients" on top.
- 3. Fill the vial ¹/₄ the way with water.
- 4. Add 2/4 (¹/₂) parts oil

 so that the vial is almost full but not completely. You may have to wait for the oil and water to separate.
- 5. Add 3-4 drops of food coloring. You can be creative here and make your own colors or you can keep them as they came.
- 6. Break one your alka seltzer into four pieces.
- 7. Add one piece (¼ of a tablet) into the vial.

8. Record your observations.

- 3. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?
- 4. Before trying the experiment again, please compare your process and results with another group. (For example, What did you do differently? What did you do the same? What worked? What didn't work?)
- 5. Then develop another hypothesis as you did in question 1.
- Switch roles with your partner and try the experiment again. Be sure to write your steps, amount of each ingredient used, and observations here.
- 7. It's time to reflect on the experiment again. What was different this time? Is there anything else you would change? Why or why not?

For the science behind this reaction, please visit: http://www.sciencefun.org/ki dszone/experiments/lava-lam p/	
END CLASS PERIOD 2.	

Explanation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 3	Do any teams want to share what happened in their experiment?	Students should report observations (<i>for example</i> , <i>adding too much of an</i> <i>ingradiant what</i>
what was found when experimenting with the lava		worked/didn't work)
lamps (for example, interesting results, what happened?, theories).	Suggested Guiding Questions:	
As the class reviews be sure	What happened when you added too much alka setzer?	The lava lamp bubbled over a lot.
they note different relationships between amounts of each ingredient.		The lava lamp released a lot of gas.
In other words, it should become clear that each of the	Did anyone notice a gas being released from the vial?	The gas came from the alka seltzer tablet.
roles in the "lava lamp" reaction.	Where did it come from?	A chemical reaction caused the alka seltzer to turn into a gas. The chemical reaction caused
Note: For more advanced classes, this is an opportunity for teachers to introduce the		evaporation.
chemistry of the lava lamps and the reactions that are taking place during the	Why did the oil and water not mix?	They're different kinds of matter. They have different densities.
experiment.		, , , , , , , , , , , , , , , , , , ,
	What other matters did we notice?	Liquid. Solid.

	Did anyone add too much of another ingredient? What happened?	Too much oil, not enough water OR not enough oil, too much watervery little "lava lamp" effect was visible. Too much food coloring, not intended color (<i>for example</i> , <i>too much blue and not</i> <i>enough red is very deep</i> <i>purple</i>).
	Did anyone add too little of an ingredient? What happened?	We didn't add enough of anything and realized it was too smalldidn't work. Not enough alka seltzer, so it just looked like flat soda.
Next, link the math! Show them that they were actually playing with fractions! Start simple, if the vial is full it is a whole (or 1). If the vial is less than 1, it is a part or fraction	Now you're all probably wondering, how does this relate to math? To fractions? Well, what do we think the vial represents?	A whole. One. A part.
	What do we mean by whole fractions and part fractions? What is the difference?	A whole is 1. A part is less than 1.
	So now, thinking back to our experiment, how do fractions relate to the lava lamps?	Each ingredient is a part. The vial is a whole. More than the vial makes an improper fraction. If the ingredients stay in the vial, it's less than a whole.
After discussing how fractions relate, let's see if we can apply them.	If we look at the vial as being a whole, or 1, how can we divide the space to create a lava lamp?	Use part fractions. Each ingredient is less than 1.
Start being saying, "If we look at the vial as being a whole, or 1, how can we	Pretty much everyone did their experiments with	

divide the space to create a lava lamp?" In other words you're guiding the students to determine the fractional amounts of each ingredient. Demonstrate division on the board by actually doing the	integers or whole numbers, but what if we introduced rational numbers? What is a rational number? So, how many parts do we	A rational number is any number that can be written as a fraction. An example is ¹ / ₃ . We've been using these already.
fractional division alongside a detailed picture.	think each ingredient should be? (<i>Have students discuss this</i> for a few minutes in their	Various answers.
After, provide students with actual measurements. Encourage students to brainstorm what the vial	pairs, then regroup as class discussion.)	
should actually look like according to the actual measurements and ask them to sketch a drawing and prove the math (i.e. show the division works and the ingredients all add up to a whole).	Good work everyone, here are the actual measurements.	

Elaboration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
While the students may be	Where do we think this	Making a cake.
enjoying themselves, they	applies in the real world? OR	Any food recipe.
might not understand how	How could what we did	Mixing paints.
this can be helpful in the real	today be used differently?	Chemistry Lab.
world, or how often they see		
fractions and don't know it.	Where do we see fractions in	Recipes.
By introducing ideas such as	the real world?	Clocks.
cooking or mixing paint,		Sport Fields.
students can discuss how		
fractions can make a big		
difference in the real world,		
just as they made a big		
difference in the outcome of		
the experiment.		

Evaluation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
Since this takes a few days,		
to save time, we suggest you		
evaluate your students by		
their recorded observations		
and completed worksheets.		

Attachments: Lava Lamps Activity Worksheet

Lava Lamps Activity Worksheet

Name:	
-------	--

Date: _____

 Develop a hypothesis before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add. Hypothesis:

9. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here. Note: You do not have to use all the spaces provided.

Steps:

21.		
22.		
23.		
24.		
25.		
26.		
27	 	
28	 	
29	 	
30		

How much did you put in of each ingredient?

water?	
oil?	
alka selzter?	
food coloring?	

10. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?

11. Before trying the experiment again, please compare your process and results with another group. (*For example, what did you do differently? What did you do the same? What worked? What didn't work?*). Then develop another hypothesis as you did in question 1. Hypothesis:

12. Try the experiment again, but this time switching roles with you partner. Be sure to write your steps, amount of each ingredient used, and observations here. Steps:

P5.	
31.	
32.	
33.	
34.	
35.	
36.	
37.	
38.	
39.	
40.	

How much did _____did you put in? water? _____ oil? _____ alka selzter? _____ food coloring? _____

-	
	Once you have completed the experiment twice, please compare your steps and result between your first and second attempts. Describe the differences and develop a conclusion. What was the same?
-	
-	What was different and how was that important?
-	
(Conclusion:
_	

Fractional Lava Lamps

Authors:Amanda Schantz – TUteach, Temple University, Philadelphia, PA and PCTM
Internship Program CoordinatorMargaret King – TUteach, Temple University, Philadelphia, PA and PCTM
Undergraduate Student RepresentativeElliot Bickel – TUteach, Temple University, Philadelphia, PA

Name/Grade level of course: Grade 8

Length: 3 class periods (This suggested length can be modified at teacher's discretion)

Appropriateness for Students:

As an interdisciplinary lesson, students will be subjected to scientific and mathematical concepts while collaborating with their classmates and thinking critically. Since this lesson contains a hands-on activity, students will be more invested than normal.

Concepts and Key Vocabulary Defined:

Fraction, Numerator, Denominator, Hypothesis, Density, Volume

Performance Objectives: Students Will Be Able To (SWBAT):

- Make predictions based on prior knowledge of fractions, volume, and density
- Observe minor chemical reactions
- Conduct their own experiments to develop conclusions
- Know that there are numbers that are not rational, and approximate them by rational numbers

Common Core Math Standards:

CC.2.2.8.C.1 Define, evaluate, and compare functions. CC.2.2.8.C.2 Use concepts of functions to model relationships between quantities.

Science Standards:

3.2.8.A4. Compare and contrast physical and chemical changes in terms of products.

Materials and Advance Preparations:

Plastic Vials, Food Coloring, Vegetable/Canola Oil, Alka-Seltzer Tablets, Paper Towels, Cups *Optional*: Science goggles and gloves - These are a preventative safety measure, potentially necessary depending on student ages. Use at teacher's discretion.

Supplementary Materials:

Lava Lamps Activity Worksheet

Safety:

Remind students not to put lids on the plastic vials while the chemical reaction is occurring - this could result in too much pressure causing the lid to pop off.

To prevent the food coloring from dying surfaces, remind students to lay down paper towels under the vials before beginning the experiment.

Remind students not to consume the ingredients.

SIOP:

Preparation	Integration of Processes	Scaffolding
_X_Adaptation of Content _X_Links to Background _X_Links to Past Learning X_Strategies Incorporated	Reading _X_Writing _X_Speaking _X_Listening	_X_Modeling Guided Practice Independent Practice X Comprehensible Input
Application	Grouping Options	Assessment

_X_Hands-on _X_Meaningful _X_Linked to Objectives X Promotes Engagement _X_Whole Class ____Small Group _X_Partners ___Independent

_X_Individual _X_Group _X_Written _X_Oral

Engagement			
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions	
KWL chart - Know and Want	What do we ALREADY KNOW about fractions? lava lamps? chemical experiments?	They are not whole numbers; they are portions of whole numbers. They are everywhere! Lava lamps work by the heat of a light bulb. You must be careful and pay attention with chemical experiments.	
	How do lava lamps work?	Heat? Magic? Density? Chemical reaction?	
	What do we WANT to know?	How do lava lamps use fractions? Why are we doing this? What is the point of this? How do lava lamps relate to math?	
Introduce Key Terms and Vocabulary. Here, you should have the students tell you how they would define each term before revealing the definition. It might also	What is a fraction?	A way to write part of a whole. A number with a numerator and denominator.	
be helpful for students to write these down so that they can reference them at any	What is the numerator?	The top number of a fraction.	
point or you may want to provide a handout with each word and corresponding definitions for student reference after the key terms are introduced. This is of	What is the denominator?	The bottom number of a fraction. The denominator must be greater than zero to be a proper fraction.	
course at teachers' discretion.	What is a hypothesis?	An idea or educated guess. A science term for the unproved truth.	

What is density?	The weight of a liquid. The amount of liquid. Relationship to objects mass (m) and volume (V) (i.e. d=m/v)
What is volume?	The amount of liquid. The amount of space in an object to hold liquid or gas. Volume is calculated by a formula specific to the object's shape.
What do you think is	Color
important to keep in mind	XX /
when creating lava lamps?	Water
	Heat
	Density
	Volume
	Directions
	Maga
	1viass
	Measurements
	What is density? What is volume? What do you think is important to keep in mind when creating lava lamps?

students that they will switch and repeat.	
END CLASS PERIOD 1	

Exploration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 2 It's time to have students experiment with the lava lamps. Make sure each pair of students gets one or two vials, a cup of canola oil, a cup of water, one or two containers of food coloring, paper towels, and a packet of alka seltzer tablets.	Student directions for lava: <i>Objective</i> : Create a "lava lamp" using the materials listed below. <i>Materials</i> : Canola oil, water, alka seltzer tablet, food coloring Activity Worksheet Questions: 1. Develop a hypothesis	
Students should have been given very basic set of instructions the day prior that indicates the objective and provided materials. In this case, students will be challenged with	before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add and when.	
understanding how much of each ingredient to use, what order to add them, and how to apply fractions. The class will later be reflecting on what happened when the experiment did or	2. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here.	
did not work well, so let them make lots of mistakes! BUT be sure to explain to the students that you have given them all the materials they need to complete the experiment and that they	3. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?	

must figure out how to do it.	4. Before trying the	
Remind students to fill in	experiment again,	
their worksheets.	please compare your	
	process and results	
	with another group.	
FOR TEACHER USE	(For example, What	
ONLY (at this point):	did you do	
Actual lava lamp activity	differently? What did	
instructions:	you do the same?	
1. Develop a hypothesis.	What worked? What	
2. Lay down paper	didn't work?)	
towels and place your		
"ingredients" on top.	5. Then develop another	
3. Fill the vial $\frac{1}{4}$ the	hypothesis as you did	
way with water.	in question 1.	
4. Add $2/4$ ($\frac{1}{2}$) parts oil		
- so that the vial is	6. Switch roles with	
almost full but not	your partner and try	
completely. You may	the experiment again.	
have to wait for the	Be sure to write your	
oil and water to	steps, amount of each	
separate.	ingredient used, and	
5. Add 3-4 drops of	observations here.	
food coloring. You		
can be creative here	7. It's time to reflect on	
and make your own	the experiment again.	
colors or you can	What was different	
keep them as they	this time? Is there	
came.	anything else you	
6. Break one your alka	would change? Why	
seltzer into four	or why not?	
pieces.		
7. Add one piece ($\frac{1}{4}$ of a		
tablet) into the vial.		
8. Record your		
observations.		
For the science behind this		
reaction, please visit:		
nttp://www.sciencefun.org/ki		
aszone/experiments/lava-lam		
<i>p</i> /		
END CLASS PERIOD 2.		

Explanation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and Possible Misconceptions
START CLASS PERIOD 3	Do any teams want to share what happened in their experiment?	Students should report observations (<i>for example,</i> <i>adding too much of an</i>
Now, discuss with the class what was found when experimenting with the lava	1	ingredient, what worked/didn't work)
lamps (for example, interesting results, what happened?, theories).	Suggested Guiding Questions:	
As the class reviews be sure they note different relationships between amounts of each ingredient.	What happened when you added too much alka setzer?	The lava lamp bubbled over a lot. The lava lamp released a lot of gas.
In other words, it should become clear that each of the ingredients play different roles in the "lava lamp" reaction. Note: For more advanced classes, this is an opportunity for teachers to introduce the	Did anyone notice a gas being released from the vial? Where did it come from?	The gas came from the alka seltzer tablet. A chemical reaction caused the alka seltzer to turn into a gas. The chemical reaction caused evaporation.
chemistry of the lava lamps and the reactions that are taking place during the experiment.	Why did the oil and water not mix?	They're different kinds of matter. They have different densities.
	What happened to the alka seltzer? (i.e. describe the chemical reaction)	The alka seltzer reacted with the water and became part of it. The water made the alka seltzer evaporate. The alka seltzer turned into a gas and disappeared.

	What other matters did we notice?	Liquid. Solid.
	Did anyone add too much of another ingredient? What happened?	Too much oil, not enough water OR not enough oil, too much watervery little "lava lamp" effect was visible. Too much food coloring, not intended color (<i>for example</i> , <i>too much blue and not</i> <i>enough red is very deep</i> <i>purple</i>).
	Did anyone add too little of an ingredient? What happened?	We didn't add enough of anything and realized it was too smalldidn't work. Not enough alka seltzer, so it just looked like flat soda.
Next, link the math! Show them that they were actually playing with fractions! Start simple, if the vial is full it is a whole (or 1). If the vial is less than 1, it is a part or fraction	Now you're all probably wondering, how does this relate to math? To fractions? Well, what do we think the vial represents?	A whole. One. A part.
	What do we mean by whole fractions and part fractions? What is the difference?	A whole is 1. A part is less than 1.
	So now, thinking back to our experiment, how do fractions relate to the lava lamps?	Each ingredient is a part. The vial is a whole. More than the vial makes an improper fraction. If the ingredients stay in the vial, it's less than a whole.
After discussing how fractions relate, let's see if we can apply them to a function.	What is a function?	Put something in, get something out.

	Can anyone describe a function for the lava lamp?	Put the ingredients in and we get a lava lamp.
Now you should encourage students to create their own		
function and have them model this with a picture and corresponding mathematical work.	What about the reaction of the alka seltzer in water, how is this a function? (i.e. what's the input and what's the output?)	Input is water and alka seltzer. Output is water and evaporated alka seltzer (aka gas).
	How can we create a function for the lava lamp using fractions?	Just add quantities and describe what's happening.

Elaboration		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
While the students may be	Where do we think this	Making a cake.
enjoying themselves, they	applies in the real world? OR	Any food recipe.
might not understand how	How could what we did	Mixing paints.
this can be helpful in the real	today be used differently?	Chemistry Lab.
world, or how often they see		
fractions and don't know it.	Where do we see fractions in	Recipes.
By introducing ideas such as	the real world?	Clocks.
cooking or mixing paint,		Sport Fields.
students can discuss how		
fractions can make a big		
difference in the real world,		
just as they made a big		
difference in the outcome of		
the experiment.		

Evaluation		
What the Teacher Will Do	Probing/Eliciting Questions	Student Responses and
		Possible Misconceptions
Since this takes a few days,		
to save time, we suggest you		
evaluate your students by		
their recorded observations		
and completed worksheets.		

Lava Lamps Activity Worksheet

Date: _____

15. Develop a hypothesis before starting the experiment. Hint: You may want to consider how much of each "ingredient" to add. Hypothesis:

16. Try the experiment based on your hypothesis. Write down your steps, how much of each ingredient you used, and observations here. Note: You do not have to use all the spaces provided.

Steps:

41.	
42	
43.	
44	
45.	
46	
47	
48	
49	
50.	

How much did you put in of each ingredient?

water?	
oil?	
alka selzter?	
food coloring?	

17. Did the experiment work? What went wrong, if anything? What could you do better/What could you change? Why?

18. Before trying the experiment again, please compare your process and results with another group. (*For example, what did you do differently? What did you do the same? What worked? What didn't work?*). Then develop another hypothesis as you did in question 1. Hypothesis:

19. Try the experiment again, but this time switching roles with you partner. Be sure to write your steps, amount of each ingredient used, and observations here. Steps:

P5.	
51.	
52.	
53.	
54.	
55.	
56.	
57.	
58.	
59.	
60.	

How much did _____did you put in? water? _____ oil? _____ alka selzter? _____ food coloring? _____

•	
-	
-	
	Once you have completed the experiment twice, please compare your steps and resul between your first and second attempts. Describe the differences and develop a conclusion.
-	
-	
-	
	What was different and how was that important?
-	
-	
,	Conclusion:
-	
-	