THE LANGUAGE OF MULTIPLYING FRACTIONS

RYAN CASEY ORCHARD GARDENS PILOT SCHOOL BOSTON PUBLIC SCHOOLS RCASEY@BOSTONPUBLICSCHOOLS.ORG

WHO AM I?

Currently teach for Boston Public Schools, at a K-8 school

Have taught or served as math coach from

Grades 2 through Grades 12

- At a K-8 school with considerable population of ELLs
- Previously taught for 3 years in a small Japanese town

Have received (and believe in) lots of strong content-based PD

- Math for America through Boston University
- Park City Math Institute (PCMI)

Where can you find each of the following fractions in the diagram above?

1	4	0.25	1
9	9	0.25	3

8 MATH TEACHING PRACTICES

 Establish mathematics goals to focus learning 	 Pose purposeful questions
 Implement tasks that	 Build procedural fluency
promote reasoning and	from conceptual
problem solving	understanding
 Use and connect mathematical representations 	 Support productive struggle in learning mathematics
 Facilitate meaningful	 Elicit and use evidence of
mathematical discourse	student thinking

8 MATH TEACHING PRACTICES

 Establish mathematics goals to focus learning 	 Pose purposeful questions
 Implement tasks that promote reasoning and problem solving 	 Build procedural fluency from conceptual understanding
 Use and connect mathematical representations 	 Support productive struggle in learning mathematics
Facilitate meaningful mathematical discourse	 Elicit and use evidence of student thinking

DEFINITION OF MATHEMATICAL UNDERSTANDING

"A mathematical idea is understood if it is part of an internal network."

"A mathematical idea, procedure, or fact is understood thoroughly if it is linked to existing networks with stronger or more numerous connections." (p. 67)

Hiebert, J., & Carpenter, T.P. (1992). Learning and teaching with understanding. *Handbook of Research Mathematics Teaching and Learning:* 65-92

REPRESENTING MATHEMATICAL IDEAS

Fig. 9. Important connections among mathematical representations p. 25, citing Lesh, Post, and Behr (1987)

FOR EXAMPLE...

$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} = \frac{1}{2}$

- 1. What are we pretty sure the student understands?
- 2. What are we pretty sure the student doesn't understand?
- 3. What does the student's statement not reveal?

Student A:
$$\frac{1}{9}$$
 is yellow.

Student B: There's $\frac{4}{9}$ of green.

Student C: $\frac{4}{9}$ of the tiles are green.

Student D: I don't think it has 0.25, because that's 'hundredths' and there aren't 100; there are only 9.

Student E: The blue is $\frac{1}{3}$ of the red.

Student F: I can see $\frac{1}{3}$ in two ways. First, $\frac{1}{3}$ of all the tiles are red. Also, the area of the blue is $\frac{1}{3}$ the area of the red.

 Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.
 Grade 3, CCSS-M

5 5 5 3 X 5 O	R 5 X 3
There are 3 T of vanilla used in each recipe. After making the recipe 5 times, how much vanilla did I use? 3 3 3 3 3 3 3 5×3	There are 3 groups of students. Each group has 5 students. How many students are there in total?
Last week, Jay's sister ran 5 times as much as Jay did. Jay ran 3 miles. How many miles did Jay's sister run? 3 3 3 3 3 3 5×3	Yesterday, I spent \$5. I spent 3 times that much today. How much did I spend today? 5 5 5 3×5

CARD MATCHING ACTIVITIES

Eliciting evidence of student thinking.

- 1. Do the task.
- 2. What would be the experience for students?
- 3. What could you learn about students?

CARD MATCHING ACTIVITIES

- Easy to differentiate.
- Timers
- Concentration
- Smaller decks
- Missing cards

MATCHING ACTIVITIES DEBRIEF

7×5	Mr. Casey bought 7 timers for his classroom. Each timer cost \$5. In total, Mr. Casey spent \$
5×7	A pack of markers costs \$7. Mr. Casey purchased 5 packs of markers. In total, Mr. Casey spent \$

MATCHING ACTIVITIES DEBRIEF

	B 10 12 20 100	11111	A 30 36 60 300		A:
B is $\frac{1}{3}$ of A.		A is 3 times more than B.			
(Car B traveled $\frac{1}{3}$ the distance Car A traveled.)			he distance	(A ate 3 times more cookies than B ate.)	

 $\frac{3}{8}$ of the people at the park are adults and the rest are children. $\frac{2}{3}$ of the adults are men, and the rest are women. $\frac{3}{10}$ of the children are boys, and the rest are girls.

How many total people could be in the park?

What fraction of all the people at the park are female?

What fraction of all the people are girls?

 $\frac{3}{8}$ of the people at the park are adults and the rest are children. $\frac{2}{3}$ of the adults are men, and the rest are women. $\frac{3}{10}$ of the children are boys, and the rest are girls.

What fraction of all the people are girls?

The class of students ate 3 boxes of doughnuts with 12 doughnuts in each box.

In total, how many doughnuts did they eat?

$$3 \times 12 = 36$$

The class of students ate $2\frac{1}{3}$ boxes of

doughnuts with 12 doughnuts in each box.

In total, how many doughnuts did they eat?

$$2\frac{1}{3} \times 12 = 24\frac{1}{3} \qquad 2\frac{1}{3} \times 12 = 28$$

 $\frac{3}{7}$ of the tiles are yellow.

 $\frac{3}{5}$ of the tiles are yellow. $\frac{1}{2}$ of the remaining tiles are blue.

 $\frac{2}{3}$ of the tiles are green. $\frac{1}{6}$ of the tiles are blue.

 $\frac{5}{9}$ of the tiles are green. 0.75 of the remaining tiles are yellow.

 $\frac{4}{7}$ of the tiles are green. There are $\frac{3}{8}$ as many blue tiles as green tiles.

TWO MAJOR SENTENCE FRAMES FOR FRACTION MULTIPLICATION

[FRACTION] of the [NAME OF WHOLE] (are [NAME OF PART]).

e.g., $\frac{3}{5}$ of the students are from Roxbury.

There are [FRACTION] as many [COMPARISON GROUP] as [REFERENCE GROUP]. e.g., There are $\frac{3}{5}$ as many students from Roxbury as students from Dorchester.