Understanding Transformations \& Common Core Objectives through Activities

Experience the activities that develop deep connections to the foundation common core objectives and the essential transformations -- Construction Math Art, Symmetry Flag Design, Reflection Mini-Golf, Kaleidoscope Imaging, Tessellations, and Picture Dilation. Come and experience the fun... and remember why we enjoy teaching geometry so much.

Introduction

I am currently teaching in the classroom at this time. I teach at Advanced Technologies Academy, a public High School in Las Vegas Nevada. I teach 3 Algebra II and 3 Geometry Honors. In 2009, I received two prestigious awards in education; I was named a Presidential Awardee for Teaching Excellence and as well a Milken Educator of the Year. In 2013, I created a curriculum to match the new Common Core Curriculum and formed the website, geometrycommoncore.com. These materials are now used in 47 different states across the US and are a major tool in moving forward the acceptance of the new standards.

1. Outline (10 minutes)

- Introductions (Page 1)
- Why? (Page 2)

2. Content (65 minutes)

- G-CO.A. 13 (Inscribed Regular Polygons)
- Math Art (15 mins) (Pages 3-6)
- G-CO.A. 3 (Symmetry)
- Quadrilateral Activity (10 mins) (Pages 7-8)
- Flag Project (10 mins) (Pages $9-10$) (Pages 23-24)

- G-CO.A. 5 (Transformations)
- Mini-Golf (15 mins) (Pages 11-16)
- Treasure Hunt (Pages 17-18)
- G-SRT.A. 1 (Dilation)
- Dilating a Picture (15 mins) (Pages 19-22)

OBJECTIVE - G.CO.D. 13 - Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Construct the requested inscribed polygons.
a) Construct an equilateral triangle inscribed in the b) Construct a square inscribed in the provided circle provided circle using your compass and straightedge. using your compass and straightedge.

Why does this construction work?

THE MATH ART PROJECT - Now that you know the basics of constructions you have the ability to create some very cool Geometric Art. Using just the construction of the inscribed hexagon (and the addition of a few segments and arcs) you can create a number of very interesting designs. Here are a few examples of Geometric Art.
http://bit.ly/gcod13art (The QR code and/or the link take you to an introduction video.)

Practice Area (Shading \& coloring change the look of the shape.... Also symmetry is very appealing to the eye.)

Category	Exemplary	Proficient	Unsatisfactory	Score
Use of Compass	All arcs are drawn with a compass	Some arcs are drawn with a compass	Student did not use a compass	
Use of Straightedge	All segments are drawn with a straightedge	Some segments are drawn with a straightedge	Student did not use a straightedge	
Complexity	Student used more than 10 lines or arcs	Student used more than 5 lines or arcs	Student used less than 5 lines or arcs	
Visual Appeal	Student colored more than 75\% of areas with colors other than black, white, or gray	Student colored more than 50\% of areas with colors other than black, white, or gray	Student colored less than 50% of areas with colors other than black, white, or gray	
Care	- All lines are clean - coloring is with the lines - eraser marks are not visible	2 out the 3 exemplary conditions are met	1 or less of the exemplary conditions are met	

OBJECTIVE - G.CO.A. 3 -- Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

To determine reflection symmetry, after copying the shape on the patty paper attempt folding the patty paper so half of the shape carries onto itself. If this can happen then there is reflectional symmetry - find all lines of reflectional symmetry.

To determine rotation symmetry, place your patty paper copy exactly onto of the quadrilateral that you just copied. Pin the center of the quadrilateral with your finger or pencil and then begin rotating the patty paper. I suggest placing a symbol at one of the vertices so you can easily track how much you have rotated the shape.

In the chart below, draw a diagram showing ALL lines of reflectional symmetry for that quadrilateral and then fill in the number of lines of symmetry you found.

In the chart below, draw a diagram listing ALL locations where the rotation symmetry occurred. Remember if a shape has no rotational symmetry, then its order is 1 .

QUADRILATERAL SYMMETRIES SUMMARY CHART

	Reflection Symmetry Diagram	Reflection Symmetry Summary	Rotation Symmetry Diagram	Rotation Symmetry Summary
Parallelogram		The number of lines of symmetry is Rotation order		
Rectangle		The number of lines of symmetry is Rotation angle		
Rhombus		The number of lines of symmetry is Rotation order		Rotation angle Square
		The number of lines of symmetry is		Rotation order Rotation angle

Why do you think symmetry introduced early?

Why do you think in the symmetry objective it focuses on the parallelogram family?

If you have one line of symmetry, what can you conclude about the figure/shape?

THE FLAG PROJECT -- Flags are often great example of symmetry. Search in the internet to find the flags of the world. Find flags that meet the criteria provided below. Sketch and color the flag and provide the name of the county. For example, the Canadian Flag has 1 line of symmetry. You are not allowed use this Canada, Trinidad \& Tobago, Thailand, Ukraine, or Qatar for your answers because I use them as examples. Also you cannot use a flag more than once on this activity.

Flag Site: http://www.sciencekids.co.nz/pictures/flags.html

Introduction: http://bit.ly/gcoa3flag

1. LINE SYMMETRY

2. ROTATION SYMMETRY

3. Determine the reflection and rotation symmetries of the provided flags.
(Colors must match to be symmetrical and you can NOT use these flags for questions \#1 and \#2)

Trinidad \& Tobago	Thailand	Ukraine	Qatar
Lines of Symmetry	Lines of Symmetry	Lines of Symmetry	Lines of Symmetry
Rotation Order	$\frac{3}{2}$	$\frac{3}{2}$	

4. Most flags are rectangular in shape. Can you find countries that have:
a) a square flag
b) a non-rectangular/square flag
5. What does the all-white flag mean?
6. What is the study of flags called? \qquad
7. What is the name of the flag that is black and has a skull and cross bones on it?
8. Which country once had a national flag that was a solid green color and nothing else? \qquad
9. a) Design your own flag. The flag must have symmetry - you can choose how much symmetry it has and whether it is rotational or reflectional symmetry. Color and Detail the Flag!! Use symbols, colors and shapes that somehow represent you and your country.
b) Explain why you designed it the way you did.
c) Described the symmetries found in your flag.

OBJECTIVE - G.CO.A. 5 -- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

CLASSIC MATH PROBLEM

Eddie is on his way home but he promised his mother that he would catch a fish for dinner. Eddie is late and so he wants to walk the least distance from where he is to the river, and from the edge of the river to his home. Find the location along the edge of the river that will create the shortest distance to walk. Also determine that distance in millimeters.

Eddie

EDGE OF THE

RIVER

MINI-GOLF (http://bit.ly/gcoa5mini)

Mini-Golf has some nice connections to transformations... in particular the reflection. The isometric characteristics of a reflection preserve the angles and distance. (The QR
 code links to an introduction video.)

Objective:

Design 6 holes of a mini-golf course using reflections.
Hole Requirements:
$\mathbf{2}$ Single Bank Holes (Par 1) $\mathbf{3}$ Double Bank Holes (Par 2) $\mathbf{1}$ Triple Bank Holes (Par 3)

Project Requirements:

1. This title page with your name and period on it.
2. The rough draft of all six holes with the solutions/answers on it.
3. The final copy of all six holes:

- Do not put any answers on the final copy (only on the rough draft)
- Place the holes on the grid paper so that if someone was to attempt them there would be enough space. (Suggestion: use 2 sheets of graph paper to place the 6 holes)
- Color, Detail, Theme.... Jazz up the hole with obstacles, landscape, sand traps, water, etc...
- Label each hole with its PAR... Par 2 means double bank, etc.....

Project Rubric:

STUDENT NAME:

Title Page Included	1						1
Rough Draft Included (All 6 holes diagramed)	1	2	3	4	5	6	
Solutions on Rough Draft are Mathematically Correct	1	2	3	4	5	6	
Final Copy (Deep Quality Color)			1	2	3		
Final Copy (Addition of Details)			1	2	3	4	
*Bonus (Upgraded the Triple Bank)			1				

PERIOD: \qquad

YOU TRY ONE.... OR TWO...

$\underline{1}$,	1			1	+	1	+	-	1				1	1

(1) From your starting position (YOU) walk half the distance to the shipwrecked boat (Point C)
(2) From that location walk the same distance and direction as from the base of the mountain (Point D) to the hut (Point F).
(3) From that location rotate 90°
counterclockwise about the base of the mountain (Point D)
(4) From that location reflect yourself over the line formed between the base of the mountain (Point D) and the double palm trees (Point E).
(5) From there walk the same distance and direction as it is from the hut (Point F) to the rock pile (Point A).
(6) From there walk half the distance to the single palm (Point B).

Place a LARGE RED X in this location.

OBJECTIVE - G.SRT.A. 1 -- Verify experimentally the properties of dilations given by a center and a scale factor:

What happens when the center of dilation is outside the shape?
a) Dilate $\triangle A B C$ from G using a scale factor of 2
$D_{G, 2}(\triangle A B C)$
b) Dilate $\triangle \mathrm{DEF}$ from H using a scale factor of 2 $D_{H, 2}(\triangle D E F)$

c) Dilate $\triangle \mathrm{ABC}$ from G using a scale factor of $1 / 2$ $D_{G, \frac{1}{2}}(\triangle A B C)$
d) Dilate $\triangle \mathrm{DEF}$ from H using a scale factor of $\frac{1}{3}$ $D_{H, \frac{1}{3}}(\triangle D E F)$

Work backwards to find the center of dilation, and also determine the scale factor.
a) Center \qquad , \qquad) Scale Factor $=$ \qquad b) Center \qquad , \qquad) Scale Factor = \qquad

Dilating Pictures

How do I do it?

Pick a number of key locations along the edge of the shape and then dilate those points by the correct scale factor. A compass can make this quite easy. Measure the distance to the pre-image point from the center of dilation and then mark the

Activity Video

http://bit.ly/gsrta1act1 remaining lengths on the ray.

So for example in the plant example below measure using your compass to a point on the pre-image and then mark two more of those lengths along the ray to get three times the pre-image length. Notice to create a scale factor of three I needed a total of three equal measure the length of the pre-image distance (the preimage distance from the center and then two more). I have done a few points to get you started. Do enough points to finish the basic outline of the shape and then 'rough' in the rest. Color the final scaled copy.

