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Typical goals for inquiry-oriented mathematics classrooms are for students to explain their 
reasoning and to make sense of others’ reasoning. In this paper we offer a framework for 
interpreting ways in which engaging in the reasoning of someone else is productive for the 
person who is listening. The framework, which captures the relationship between engaging with 
another’s reasoning, decentering, elaborating justifications, and refining/enriching conceptions, 
is the result of analysis of 10 individual problem-solving interviews with 10 mathematics 
education graduate students enrolled in a mathematics content course on chaos and fractals. The 
theoretical grounding for this work is that of the emergent perspective (Cobb & Yackel, 1996). 
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Typical goals for inquiry-oriented mathematics classrooms are to foster particular social 
norms, such as students explaining their reasoning, listening to others’ reasoning, and making 
sense of that reasoning (Yackel & Cobb, 1996). Indeed, such goals for student participation have 
been central to a long line of recommendations in the United States (National Council of 
Teachers of Mathematics, 2000; National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010). The purpose of this paper is to offer a framework 
for understanding the various ways in which engaging in the reasoning of someone else is 
productive for the person who is listening to and attempting to make sense of this reasoning. 
Prior research has documented ways in which teachers can initiate and sustain such norms for 
participation (e.g., Lampert, 1990; Stephan & Whitenack, 2003), but most research into the 
benefits of such engagement focuses on the students’ thinking, not that of the one engaging in 
the other’s reasoning (e.g., Teuscher, Moore, & Carlson, 2015). While there has been some 
research into mutual intellectual benefit stemming from peer-to-peer engagements (e.g., Kieran 
& Dreyfus, 1998), it has not been at the collegiate level. Our work contributes to this surprisingly 
sparse literature, extends notions identified in disparate settings, and adds nuance to existing 
notions of engaging and decentering. 

The theoretical grounding for this work is that of the emergent perspective (Cobb & 
Yackel, 1996), which coordinates the individual cognitive perspective of constructivism (von 
Glasersfeld, 1995) and the sociocultural perspective based on symbolic interactionism (Blumer, 
1969). A primary assumption from this point of view is that mathematical progress is a process 
of active individual construction and a process of mathematical enculturation. The interpretive 
framework, shown in Figure 1, lays out the central constructs in the emergent perspective. The 
within row relationships between respective collective and individual constructs is said to be 
reflexive, meaning that they are mutually constitutive, evolving together in a dynamic system. 
For example, (Yackel & Rasmussen, 2002) analyze individual students’ evolving beliefs about 
their and others’ role in relation to evolving classroom social norms. This work speaks to one 
way in which engaging in the reasoning of others (a social norm) is productive for the individual; 
namely doing so positively shapes beliefs.  
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Collective Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, and the 

general nature of mathematical activity 
Sociomathematical norms Mathematical beliefs and values 
Classroom mathematical practices Mathematical conceptions and activity 

Figure 1. The interpretive framework of the emergent perspective. 
 
In furthering the relationships between the constructs in Figure 1, we argue for across row 
relationships. In particular, we take the stance that classroom social norms are also inextricably 
intertwined with individual mathematical conceptions and activity. In so doing we make an 
empirically grounded argument for a theoretical connection between the upper left hand cell of 
the interpretive framework and the bottom right hand cell.  

In our broader research program (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; 
Tabach, Rasmussen, Hershkowitz, & Dreyfus, 2015), we are investigating the coordination 
between individual and collective processes. In this report, however, we focus on analyzing 
individual mathematical conceptions and activity in an individual interview setting, with the 
subsequent goal of coordinating this analysis with an analysis of classroom video-recordings. 
This report lays a foundation for this subsequent analysis, but the framework for ways of 
engaging in someone else’s reasoning is potentially significant on its own.  
 
Methodology 

The methodological approach for the larger study falls under the genre of “design-based 
research” (Cobb, 2000; Design-Based Research Collective, 2003). The study took place in an 
intact graduate level mathematics course about chaos and fractals with 11 students (10 of whom 
agreed to participate in individual interviews). Students were (or intended to be) secondary 
school teachers or community college instructors. Their masters degree program required a 
substantial component of mathematics, and the chaos and fractals course qualified as one of their 
mathematics courses. The course was taught by one of the research team members. Data 
collected as part of the larger study included video-recordings of each class session, individual 
problem solving interviews conducted at the middle and end of the semester, and copies of all 
student work. In this paper we report on an analysis of the 10 individual, mid-semester problem-
solving interviews.  
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The following question from the mid semester interview is the focus of this analysis: 

 
The Sierpinski Triangle is a fractal, and is the result of an infinite iterative process that 

begins with an equilateral triangle. Connecting the midpoints of its sides results in another 
equilateral triangle with sides half the length of the original’s and area that is one-fourth of the 
original’s, which is then removed. Repeating this process, ad infinitum, results in the Sierpinski 
Triangle. At each step of the process, the area of shrinks by a factor of  ¾ and the perimeter 
grows by a factor of 3/2. The perimeter of the Sierpinski Triangle can be described by the limit, as 
n→∞, of P0×(3/2)n, and the area by the limit, as n→∞, of A0×(3/4)n, where P0 and A0 refer to the 
perimeter and area of the starting triangle. Thus the Sierpinski Triangle has a perimeter of 
infinite length and an area of zero. This apparent contradiction comes from the fact that it is a 
fractal with Fractal dimension log2(3), putting it between one- and two-dimensions. 

The question was structured so that we would first gain insight into students’ own 
reasoning about the area and perimeter of the Sierpinski triangle, followed by an opportunity for 
them to engage in the hypothetical reasoning of “Fred.” The basis for Fred’s reasoning was taken 
from a whole class discussion that took place several weeks before the interview. Thus, Fred’s 
reasoning is authentic to the students and provides an ideal opportunity for us to subsequently 
coordinate individual and collective analyses.  

While most studies of decentering and engagement have involved interactions between 
two or more people, ours involves one person interacting with the work of another, who cannot 
respond. While this setup potentially restricts the ability of interviewees to engage with Fred and 
his argument, it has certain affordances as well. One affordance is that all interviewees reacted to 

In class, we discussed the Sierpinski Triangle. How do you think about what happens to the 
perimeter and the area of the Sierpinski Triangle as the number of iterations tends to infinity? 

 

Follow-up questions: 

a. One a scale from 1 to 10 with 10 being the most confident, how confident are you about 
what happens to the area? Can you say more about why you said [confidence number]?  

b. On a scale from 1 to 10, with 10 being the most confident, how confident are you about 
what happens to the perimeter? Why do you say [confidence number]? 

c. A student named Fred claimed the following. Please read it out loud. What do you think 
about his argument? (Please explain) 

 
Fred’s Argument: The computation shows that the perimeter goes to infinity because the 
perimeter is given by 3×(3/2)n which increases to infinity as n tends to infinity. But, the 
perimeter can’t really be infinitely long, because there is nothing left to draw a perimeter 
around, since the area goes to zero. 
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the same statement, allowing us to make direct comparisons. This setup also controls for a 
variety of other features, such as personal histories, that may influence how people react to each 
other in face-to-face settings.   

The transcripts and student work produced during the interview were open coded using 
methods from grounded theory (Strauss & Corbin, 1998). This open coding, which was 
conducted collaboratively by the authors to minimize bias and ensure interpretations were 
grounded in the data, was informed by literature on student thinking about infinity, and in 
particular infinite iterative processes (Núñez, 1994; Mamolo & Zazkis, 2008), but did not rely on 
an a priori coding scheme. 

The initial open coding of these interviews revealed differences between students’ initial 
responses and those that followed reading Fred’s argument. It also revealed a variety of ways of 
engaging and responding to Fred. We then supplemented our initial coding, using Toulmin’s 
argumentation scheme (Toulmin, 1969) to analyze the pre- and post-Fred arguments presented 
by the students. Finally, each transcript was distilled into an argumentation log (Rasmussen & 
Stephan, 2008), coupled with the primary ways of reasoning being used in each argument and 
instances of engagement, and supplemented by statements about the mathematics that were not 
necessarily part of a coherent argument. Again using grounded theory, these were analyzed for 
shifts and relationships. 
 
Results 

Our analysis of students’ responses revealed that responding to Fred’s argument was a 
productive experience for most students. There was variation across students with regards to both 
the extent and nature of their engagement and growth, but we note two major categories of 
productivity that stemmed from an ability to engage in Fred’s reasoning and decenter from their 
own: elaborating justifications and refining/enriching conceptions of particular mathematical 
ideas. Figure 2 is intended to capture the relationship between engaging with another’s 
reasoning, decentering, elaborating justifications, and refining/enriching conceptions. 
Specifically, engaging with another’s thinking can be foundational for (re)engaging with one’s 
own thinking. That is, the act of decentering provided the means for elaborating justifications 
and refining one’s thinking. The intersecting ovals in Figure 2 for these two acts signify the 
reciprocal relationship between justifying and refining conceptions. 

 
Figure 2. Productivity of engaging in another’s reasoning 

 

Evaluating, indicating (dis)agreement, connecting with own 
reasoning, connecting with others’ reasoning, entertaining 

another’s reasoning, interpreting, empathizing

(Re)engaging with one’s own thinking

Elaboration of 
justification using new or 
improved argumentation

Reflecting and/or revising 
individual mathematical 

conceptions

Engaging with another’s thinking

Decentering
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Since all of the interviewed students were or intended to be teachers at the secondary or 
postsecondary level, it is particularly interesting to look at their ability to engage with another’s 
thinking. Doing so is foundational to teacher noticing (Jacobs, Lamb, & Philipp, 2010) in which 
teachers can instructionally build on student thinking. We found that all of the interviewees 
exhibited the ability to engage with Fred’s thinking. We identified the following ways that 
interviewees engaged in Fred’s reasoning: a) evaluating (with or without justification); b) 
indicating (dis)agreement (with or without justification); c) making connections to their own 
reasoning; d) making connections to classmates’ reasoning; e) entertaining Fred’s reasoning; f) 
interpreting Fred’s reasoning; g) diagnosing Fred’s reasoning; and h) empathizing with Fred. 
These ways of engaging provide an opportunity for the individual to decenter. By decenter, we 
mean putting aside one’s own reasoning in an attempt to understand another’s reasoning (Steffe 
& Thompson, 2000; Teuscher, Moore, & Carlson, 2015). Many interviewees, through 
decentering, engaged or re-engaged with their own thinking in a way that furthered their own 
thinking. This analysis lays the groundwork for coordinating individual and collective ways of 
participating in discourse since evaluating (with justification) and indicating (dis)agreement 
connect strongly to foundational classroom social norms. 

In this paper we give a few brief examples of engaging and decentering. Most students 
gave some indication of agreement or disagreement with Fred’s argument, e.g. “I agree with him 
that the perimeter increases to infinity […] but I disagree with his second line.” This example 
shows a fairly superficial engagement in which the interviewee attended to Fred’s reasoning but 
viewed it from her own point of view. Other students went further, e.g. “I disagree because we 
thought about it in terms of fencing […] so eventually it’s all fence.” The second student’s 
explanation makes it clear that while she has not necessarily built a model of Fred’s line of 
reasoning, she is aware of her own model and believes Fred’s is different. This second student 
then elaborated and improved upon her original argument.  

Interviewees also demonstrated a range of depth when engaging with Fred by interpreting 
his reasoning. Some interpreted Fred’s thinking from their own point of view, but others made 
clear attempts to deduce Fred’s reasoning from his point of view – in one case an interviewee 
requested more information about Fred’s argument before settling on an interpretation. We saw 
evidence, across all interviews, that each act of engaging functioned as a potential stepping-stone 
to decentering, an opportunity that some students took up while others did not. We saw that 
students who engaged deeply with Fred’s thinking and decentered from their own point of view 
appeared to (re)engage with their own thinking.  

As a consequence of decentering, many of the students clarified and even advanced their 
own lines of mathematical reasoning as expressed by Figure 2. As Fred’s argument was in 
response to a question they had already answered, many reacted by re-explaining or expanding 
their initial justification. Within mathematical thinking we observed two main subcategories: the 
elaboration of justification for their claims and the expansion of their thinking regarding the 
mathematical concepts involved in the task. By elaboration of justification, we mean that 
students were observed adding new or improved warrants and backings to strengthen their 
argument or even providing entirely alternative explanations. As an example, one student, 
Sandor, reacted to Fred’s argument by noting that that it is because the area of the Sierpinski 
Triangle goes to zero that the perimeter goes to infinity, and explicitly connected the removal of 
triangles at each recursive step to adding the perimeter of these triangles to the total perimeter. 
Prior to engaging with Fred’s statement, he had treated the two results as essentially separate 
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features of the process – the connection between the two had gone unnoticed or at least 
unexplained.  

With regards to the underlying mathematical concepts, we observed students exploring 
the nature of infinity, perimeter, and the Sierpinski Triangle itself in greater depth than they had 
in their initial arguments. Some students appeared to become aware of a distinction between 
potential infinity (the unending process) and actual infinity (the final resultant state) in their 
attempts to clarify their reasoning. Many students took the opportunity to define, or re-define, the 
perimeter of an object. Students also reflected on the fractal nature of the Sierpinski Triangle, 
noting that it exists “between” dimensions and therefore does not act in the way that a “normal” 
one- or two-dimensional object might, and that therefore traditional thinking about a perimeter 
enclosing area is not necessarily valid in this context.  

While we identify decentering and mathematical thinking as distinct, we note that they 
are not disjoint. All of these examples of expanded thinking and reasoning occurred to some 
extent as a reaction to the thinking of someone else. We posit that decentering functioned as a 
catalyst for this process. Seeing Fred’s argument, interviewees demonstrated a variety of 
strategies for engaging with student reasoning, which were taken up with varying depth. Deeper 
engagement took the form of decentering, which predicated (re)engagement with and growth of 
their own reasoning. That is to say, the greater the extent to which students engaged with Fred 
and decentered, the more productive the experience was with regards to their own thinking. 
 
The Case of Curtis 

To clarify the constructs and interpretations outlined above, we present the case of a 
single student, with pseudonym Curtis. We choose this student as an example because of the 
brevity and clarity of this portion of his interview, as well as the range of constructs identified in 
his experience with Fred. Figure 3 shows Toulmin analyses of Curtis’s pre- and post-Fred 
arguments, as well as his comment about infinite processes. 

   
Figure 3. Toulmin analysis of Curtis’ arguments. 

 
The Toulmin analysis of Curtis’ pre- and post-Fred argumentation revealed shifts and changes. A 
small shift occurred in Curtis’ claim: initially he showed that the perimeter is infinite, afterward 
he showed it could not be finite. This new claim is drawn from different data and is supported by 
a different warrant. Where initially Curtis used formal/symbolic reasoning, his second argument 
draws on heuristics and a sense that the Sierpinski Triangle is not a real object. He also brings up 
the fact that infinite processes do not have a ‘final step’ after which they reach their final state, 
something that was not mentioned prior to Fred. 
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Retracing the emergence of new topics for Curtis, we found that they were directly linked 
to his engagement with Fred’s reasoning, and in particular resulted from his ability to decenter 
and look at Fred’s reasoning in ways not related to his own. Curtis comments that Fred’s “logic 
doesn’t work,” addressing more than just his faulty claim. The new warrant that Curtis provides, 
that the Sierpinski Triangle is not a physical object but rather “kind of just a concept,” directly 
addresses an unspoken assumption on Fred’s part. It seems that Curtis has identified and reacted 
to an implicit backing in Fred’s argument – that the Sierpinski Triangle is a geometric object that 
obeys two-dimensional rules. Curtis’ diagnosis of a misconception underlying Fred’s reasoning 
implies that he has considered Fred’s argument from a different viewpoint, effectively trying to 
put himself in Fred’s shoes and understand fully his reasoning. 

In addition to presenting a new argument, Curtis presents it in a new style. While his 
original argument was based in formal limits and notation, his new argument adopts some of 
Fred’s informal, heuristic, and geometric language. Again, this supports the idea that Curtis is 
working from Fred’s point of view, rather than his own. 

Finally, Curtis’ added commentary about infinite processes comes from his interpretation 
of Fred’s argument.  He says that Fred’s argument is equivalent to there being a final step, a 
point where something is taken away and the area becomes zero, and notes that this is not how 
infinite processes work. This seems to address Fred’s data, that the object becomes something 
with no area. 

Altogether, we see that Curtis addresses all the pieces of Fred’s argument (not just the 
claim) by thinking through Fred’s reasoning (not just comparing it to his own). This includes an 
implicit backing that Fred does not explicitly state. He does so using Fred’s style of reasoning, 
and (re)engages with his own reasoning to present a second argument and an observation about 
infinite processes. Throughout his response to Fred, Curtis addresses Fred’s reasoning and 
explains why it does not work, rather than simply asserting that his own original ideas are 
correct. 

 
Figure 4. Curtis’ productivity from engaging with Fred’s reasoning. 

 
Conclusion 

In conclusion, we return to classroom social norms and the ultimate role we envision for 
our framework. We argue that the ways of engaging we observed in these interviews are closely 
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related to particular classroom social norms.  The relevant social norms related to engaging in 
others’ reasoning include listening to others’ reasoning, attempting to make sense of this 
reasoning, and indicating agreement or disagreement, with reasons. Moreover, acting in 
accordance with these norms led, through decentering, to enriched and refined mathematical 
conceptions and activity. The case of Curtis illustrates that decentering is an individual cognitive 
mechanism triggered by engaging with another’s reasoning.  

Prior work posits a reflexive relationship between engaging in others’ reasoning (i.e., 
social norms) and individual beliefs. In Figure 1, this relationship coordinates the cells in the top 
row of the interpretive framework. As far as we are aware, the analysis in this paper is the first to 
coordinate social norms and individual mathematical conceptions and activity. That is, we 
provide evidence for a relationship between social norms (upper left hand cell of the interpretive 
framework in Figure 1) and individual conceptions (bottom right hand cell). This importance of 
this work lies in coordinating different analytic tools that separately address collective and 
individual phenomenon. Thus, our framework not only contributes to a nuanced understanding of 
engaging and decentering with another’s reasoning, but also leads to links between individual 
mathematical conceptions and social activity. 
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