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What do Eighth Grade Students Look For When Determining if a Mathematical Argument is Convincing? 
 

Nurturing students’ mathematical reasoning and proving capacity has been recognized as fundamental aspects 
of mathematics (CCSSO, 2010; NCTM, 2000). However, it is also well documented that students’ understanding of 
mathematical proofs and their ability to conduct rigorous mathematical reasoning remains underdeveloped at all grade 
levels (Chazan, 1993; Chazan & Lueke, 2009; Dreyfus, 1999; Harel & Sowder, 1998, 2007; Heinze & Reiss, 2009; 
Kuchemann & Hoyles, 2009; Mason, 2009; Waring, 2000; Weber, 2001; Schoenfeld, 1988). 

Usiskin (1982) conducted a large-scale study of secondary students’ geometric reasoning levels using the van 
Hiele model (van Hiele, 1980; 1986). Results of the study indicated that “Few students (barely a quarter of the 
population at most) are at levels 4 or 5, the levels at which, according to the van Hiele theory, students are able to 
understand proof” (p. 40). Thirty years later, results from National Assessment of Educational Progress mathematics 
studies revealed similar results (NAEP, 2010). Only about a quarter of the Grade 12 participants (23% in 2005 and 26% 
in 2009) were at or above Proficient Level, where students are “able to test and validate geometric and algebraic 
conjectures using a variety of methods, including deductive reasoning and counterexamples” (p. 32); while very few of 
the participants (2% in 2005 and 3% in 2009) were at Advanced Level, where students are able to “provide 
mathematical justifications for their solutions, and make generalizations and provide mathematical justifications for 
those generalizations,” “reflect on their reasoning,” and “understand the role of hypotheses, deductive reasoning, and 
conclusions in geometric proofs and algebraic arguments made by themselves and others” (p. 32). 

It is recognized that this failure might be due to the fact that proofs and the proving process are often taught as 
an isolated topic in a geometry course instead of as a conceptual tool for reasoning throughout the curriculum (Herbst 
& Brach, 2006; Reid, 2011). As a consequence, students tend to view proof as a special format of written work (e.g. 
two-column proof) instead of a dependable way to produce reliable arguments (Chazan, 1993; González & Herbst, 
2006; Healy & Hoyles, 2000; Schoenfeld, 1988). To address the issue, recent reform efforts in the mathematics 
curriculum tended to place less emphasis on the format of proof while paying more attention to nurturing students’ 
proof skills through the understanding of specific topics throughout the grades (de Villiers, 1990, 2003; Hanna, 2000a, 
2000b; Reid, 2011). This is consistent with the call from Principles and Standards for School Mathematics (NCTM, 
2000), which states that “reasoning and proof cannot simply be taught in a single unit on logic, for example, or by 
‘doing proofs’ in geometry” (p. 56). Such a perspective situates proof as a mathematical method developing naturally 
through mathematical inquiry – the need for proof emerges when the need to explore, verify, and systemize 
mathematical ideas is recognized (De Villiers, 1990; Lakatos, 1976). To implement such an approach, it is not only 
important to carefully examine the development of content structure, but also to understand the nature of students’ 
thinking in proof-related activities (Mejia-Ramos & Inglis, 2009). 

One prominent work in understanding the students’ mathematical reasoning is the proof scheme framework 
proposed by Harel and Sowders (1998). Extending previous research such as Bell (1976) and Balacheff (1988; 1991), 
Harel and Sowder organized the types of arguments students (primarily college mathematics majors) might use in 
various branches of mathematics and proposed a framework of proof schemes consisting of three main categories, i.e. 
“external,” “empirical,” & “analytical,” each of which encompasses several subcategories. External proof schemes 
include instances where students determine the validity of an argument by referring to external sources, such as the 
appearance or authorship of the argument instead of its content. Empirical proof schemes, inductive or perceptual, 
include instances when a student relies on examples or mental images to verify the validity of an argument; the prior 
draws heavily on examination of cases for convincing oneself, while the latter is grounded in more intuitively 
coordinated mental procedures without realizing the impact of specific transformations. Lastly, analytical proof 
schemes rely on either transformational structures (operations on objects) or axiomatic modes of reasoning that include 
resting upon definitions, postulates, or previously proven conjectures.  

Harel and Sowder’s (1998) proof scheme framework is powerful in categorizing the type of proof adopted by 
students, yet it does not serve the purpose of explaining why a particular proof scheme is used by an individual. Healy 
and Hoyles’ (2000) study examined the factors that influence students’ decisions on what type of proof was valid. 
Focusing on high-attaining 14- and 15-year-old students, Healy and Hoyles (2000) found that students’ judgment was 
impacted by their understanding of the purpose of the proof (i.e. to satisfy the teacher or to convince themselves, also 
see de Villiers, 1990; 2003), their mathematical competence, the instruction they received (also see Hoyles, 1997; 
Herbst & Branch, 2006), and their genders.  

Both Harel and Sowder (1998) and Healy and Hoyles (2000) found that students’ creation and evaluation of 
mathematical proofs was inconsistent across content areas. Students might value and create a deductive proof in one 
context and yet rely on empirical verification in another context. Such findings are consistent with existing 
developmental models of proof understanding (e.g. Waring, 2000; Yang & Lin, 2008; Tall et al., 2012), where the 
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overarching understanding and consistent use of deductive reasoning is not achieved until learners reach the higher 
levels. However, the basis on which students rely on different schemes is still unexplained. There is a lack of 
explanation of why students may rely on, for instance, theorems to prove a geometric property, but are simultaneously 
fully convinced by checking a few cases in proving a number theory conjecture. Investigation into an explanation of 
the phenomena requires an analysis of students’ thinking processes when they conduct an evaluation of mathematical 
arguments. This study is conceptualized to contribute to this investigation. 

 
Theoretical Framework 

The purpose of this study is to explore what students look for when determining if a mathematical argument is 
convincing. In order to do so, the Classification of Mathematical Argument (CMA) framework (see Figure 1) was 
conceptualized based on Stylianides and Stylianides’ (2008a) identification of three characteristics of proofs, and Harel 
and Sowder’s (1998) proof scheme model to categorize the aspects and features of mathematical arguments. 

 

 
Figure 1. Classification of Mathematics Arguments (CMA) framework 

 
Stylianides and Stylianides (2008a) identified three characteristics of mathematical proof: the mode of 

argument representations (which describes the format of expressions), the set of accepted statements (which states 
what is taken for granted), and the mode of argumentation (which represents the process of reasoning). 

Stylianides and Stylianides (2008a) identified three modes of representations – verbal, pictorial, and 
algebraic. For this study, the verbal category was further differentiated as two categories, narrative and numerical. 
Narrative arguments refer to those using casual language without referring to exact numbers or using algebraic 
symbols. A typical example could be “Because the car is slower, it takes a longer time to get to the destination.” 
Numerical arguments refer to those using Arabic digits and operational symbols (such as “+,” “-,” “<” and “( )”). For 
example, the argument “since 12 = 3 * 4, then 12 is a multiple of 3” is considered numerical. Algebraic arguments 
refer to those using the alphabet to represent mathematical concepts and communicate ideas. For instance, the 
argument “Since x2-2x+1=(x-1)2, then it must be non-negative” is considered algebraic. The last type is pictorial 
arguments, where pictures, figures, or other visual aids are provided to present concepts and to communicate ideas. An 
argument using the quantity of concrete figures to represent certain numbers is an example of pictorial arguments. 

Different genres within the set of accepted statements and the mode of argumentation were informed through 
Harel and Sowder’s (1998) proof scheme model. In particular, an accepted statement could be classified as authority 
(i.e. what’s stated by a respectful knowledge carrier, e.g. teachers, mathematicians, books, agreement of a community, 
etc.), example (i.e. result from an empirical test), imaginary (i.e. mental image created from recalling previous 
experience), math fact (i.e. a well known existing mathematical result), an assumption (i.e. promises assumed as the 
context of discussion), and opinion (conviction without an explicit reason).  

The modes of argumentation used in this work include direct indication, perceptual connection, induction, 
transformation (Simon, 1996), ritual operation (Healy & Hoyles, 2000), and deduction. In direct indication, the 
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conclusion is the required condition of source without any additional understanding (e.g. “Since the squares of a 
positive number, a negative number, and 0 are all non-negative, then the square of a real number is non-negative”). 
Perceptual connection refers to the linking of the source and the conclusion based on visualization or intuition. The 
argument “Since f(x) is a much longer expression than g(x), then f(x) must be larger” is an illustration of the use of 
perceptual connection in an argument. The use of metaphor/simile also falls into this category. Induction and 
transformation both refer to a conclusion informed by several pieces of empirical evidence; however, transformation 
involves a further investigation and noticing of properties that connect the empirical cases. For example, claiming that 
a property is true for all numbers purely based on testing a few numbers is considered induction; however, the use of 
generic examples (Balacheff, 1988), where certain general patterns were conceptualized during the study of the 
examples, is considered transformation. Ritual operation and deduction both refer to a valid procedure; however, 
ritual operation refers to the use of a standardized procedure without knowing its limitations or why it works, while 
deduction refers to reasoning with an understanding of the logic between each of the steps in the process. 

Throughout the rest of this paper, the mode of representation, the set of accepted statements, and the mode of 
argumentation will be called the “aspects” of an argument, while each category of an aspect is called a “feature” of an 
argument.  

It is important to note that there is a certain degree of uncertainty when classifying a mathematical argument, 
depending on how explicitly the accepted statements are identified and how detailed the processes of argumentation 
are explained. Consider, as an example, the following argument: “Since 2+2=4, 2+4=6, 2+6=8, 4+6=10, then the sum 
of two even numbers must also be even.” The representation of the argument is numerical. The accepted statements are 
the examples (results of several trials). The mode of argumentation appears to be induction, but might raise some 
questions. For instance, it is possible that when a student claims the argument to be valid, he/she might have gained 
insights from the trial results without explicitly expressing the discoveries. If that is the case, what convinced the 
student is no longer just an induction, but instead the transformation he/she made through the observation of the given 
examples. Therefore, it is important to acknowledge that the mode of representation, the set of accepted statements, 
and the mode of argumentation are not determined by the argument in its written format, but through a subject’s 
interpretation of the argument.  

Since individuals often have different interpretations of the same argument, the investigation of what features 
of an argument influence a student’s evaluation of it can only be conducted with a thorough understanding of the 
student’s interpretation and understanding of the argument. Therefore, clinical interviews were adopted as a 
methodology in order to collect in-depth qualitative data about students’ thinking and reasoning (McConaughy, & 
Achenbach, 2001).   

 
Method 

Participants 
Clinical interviews were conducted with eight public school eighth grade students from a U.S. Midwestern 

state. Gender appropriate pseudonyms (Allen, Blake, Cindy, Deb, Emily, Fiona, Grace, and Heather) are used for the 
rest of the article. All of the subjects were enrolled in Algebra I or an equivalent class (Integrated 8th Grade 
Mathematics) at the time of the interviews. Two subjects (Allen and Grace) were taking Honors Algebra I. The 
interviews were recorded at the end of the spring semester, and so the subjects were close to finishing their coursework 
for the school year. There were 2 male and 6 female students. Seven of the subjects were White and only one subject 
(Grace) was African-American. All subjects were native English speakers. It is not expected that the 8 subjects could 
generalize to students with all demographic and academic backgrounds. However, it is expected that the findings about 
the individuals could shed light on the nature of how students’ thinking plays a role in evaluating mathematical 
arguments. 

The choice of 8th graders as the subjects of the study is primarily based on two considerations. First, according 
to Piaget’s (1985) Intellectual Development Stages, middle school students are at a critical cognitive phase where they 
can begin to engage in abstract and logical thinking. Therefore, how they learn to evaluate different arguments at this 
stage could potentially impact their reasoning skills and thinking habits in their later academic years. Second, 
according to the curriculum standards (NCTM, 2000; CCSSO, 2010), most 8th grade students should have obtained a 
basic understanding of numbers, shapes, probabilistic chance, algebraic expressions, simple propositions and 
properties, and should be able to see the connections between concepts and ideas. However, they may not have adopted 
abstract thinking or deductive ways of mathematical reasoning using conventional proving techniques and forms. 
Therefore, 8th grade serves as a bridge between middle and high school mathematics and the link between informal and 
more formal and abstract mathematical reasoning, and thus a focus on 8th graders’ thinking and reasoning could 
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provide valuable information on how to initiate the development of more rigorous mathematical reasoning in 
secondary mathematics. 
 
Interview Design 

According to a survey conducted by Mejia-Ramos and Inglis (2009), the majority of studies on mathematical 
proof are concerned with students’ estimation, exploration, and justification of a mathematical conjecture, while few 
studies attend to students’ comprehension or evaluation of a given proof. In addition, instruments that assess students’ 
comprehension of proofs are also underdeveloped (Mejia-Ramos et al., 2012). To address this gap in the literature, the 
interview instrument was designed to explore students’ evaluation of mathematical arguments in various contexts.  

Five mathematical problems (A, B, C, D, and E) were chosen for the interview instrument (see Appendix I). 
The instrument design was informed by Healy and Hoyles’ (2000) study where one conjecture was proposed in each 
problem followed by several arguments, which validated the conjecture in different ways. The problems were 
embedded in the main strands of school mathematics as described by the curriculum: number theory, geometry, 
probability, and algebra, which provided distinct contexts to investigate subjects’ thinking. Conjectures in Problems A, 
B, D, and E are true conjectures. The conjecture in Problem C is false, but the counterexamples to this conjecture are 
not obvious. The arguments in each problem were provided to validate the corresponding conjecture. Table 1 provides 
an overview of the mathematical content and a key feature of the arguments, as identified by the researcher, associated 
with each of the conjectures. 

 
Table 1. Content of each conjecture and a key feature of each argument 

Problem A 
(number theory) 

Problem B 
(geometry) 

Problem C 
(geometry) 

Problem D 
(algebra) 

Problem E 
(probability) 

A1 (inductive) B1 (inductive) C1 (inductive) D1 (inductive) E1 (inductive) 

A2 (algebraic) B2 (perceptual) C2 (algebraic) D2 (algebraic) E2 (pictorial) 

A3 (perceptual) B3 (algebraic) C3 (pictorial) D3 (perceptual) E3 (perceptual) 

A4 (pictorial) B4 (pictorial) C4 (perceptual) D4 (pictorial) E4 (algebraic) 
 
The problems were presented to subjects on colored paper cards. Each card included either a conjecture or an 

argument. A conjecture and related arguments were printed on the cards of the same color. During the interview, the 
subject first selected a problem (a bundle of the conjecture and the arguments) by a color of his or her choice. The 
subject was asked to separate and read the conjecture and arguments, and then place the arguments in a column from 
the most convincing (on the top of the column) to the least convincing (on the bottom of the column). The subject was 
then asked to explain his/her rationale of the ranking by explicitly comparing one argument to all of the other 
arguments within that problem. After the explanation, the subject repeated the same process with a different problem.  

Throughout the interviews, the subjects were encouraged to explain their thoughts and were provided ample 
time and opportunities to do so. In cases when the subject encountered difficulty in explaining his/her thoughts, the 
interviewer relied on several follow-up questions to facilitate the discussion. Such questions included:  

• Do you think that one of the arguments is wrong? 
• Do you think that this argument showed the conjecture is always true without any exception? 
• Does any argument help you understand the problem better? Why?  
• Do you think that this argument’s evidence cannot support its conclusion? 

The columns of arguments were placed side-by-side so the subject could have an overview of what argument was 
ranked highly or lowly in every problem. (See Figure 2 for a sample ranking by a subject. Each card had the actual 
conjecture or argument instead of just a label as shown in the figure.) 

Besides explaining his/her ranking of arguments within each problem, the subject was also asked to review 
his/her ranking across the problems and to explain if there were any general ideas that guided their rankings across the 
problems. The comparison focused on why the subject ranked the arguments with a similar feature (e.g. pictorial 
demonstration, use of algebra, use of specific examples, and etc.) consistently highly across the problems, consistently 
lowly across the problems, or inconsistently across the problems. This comparison allowed the subject to explicitly 
explain his/her view of a certain feature of the arguments and how this feature may impact his/her judgment, and hence 
allowed an analysis of the explanation based on the CMA framework.  
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Conjecture B Conjecture C Conjecture A Conjecture D Conjecture E 
Argument B2 Argument C2 Argument A1 Argument D3 Argument E2 
Argument B1 Argument C3 Argument A3 Argument D4 Argument E1 
Argument B3 Argument C4 Argument A2 Argument D1 Argument E4 
Argument B4 Argument C1 Argument A4 Argument D2 Argument E3 

Figure 2. Illustration of subject’s view of their rankings of the arguments in all problems 
 

Data Analysis 
The interview responses were transcribed verbatim and analyzed qualitatively. First, each comment made by a 

subject toward an argument was classified according to whether it referred to the mode of representation, the set of 
accepted statements, or the mode of argumentation. Second, the occurrence of comments on each of the aspects was 
counted to describe the subject’s attention while engaged in argument evaluation. Third, the occurrences of comments 
on a specific feature of an argument were counted, and whether such feature had a positive or negative impact on the 
subject’s evaluation of the argument was also documented. Lastly, subjects made some comments regarding factors 
that were not included in CMA framework (e.g. the length of the argument might have impacted some subjects’ 
judgment). Those factors were categorized as non-CMA factors and were also studied to understand each subject’s 
rationale in argument evaluation. Figure 3 illustrates the steps in the analysis. 

 

 
Figure 3. Steps in the interview analysis 

 
To illustrate how the interview analysis was conducted, Allen’s case is explained more fully. The same 

analytical procedure was utilized in all other 7 cases. The following section provides the details of how Allen’s 
interview responses were transformed into an analyzable form, how this form was coded, and how the coding was 
interpreted to understand his rationale for evaluating mathematical arguments. 

 
The case of Allen 

Allen was an 8th grade student enrolled in an Honors Algebra I class at the time of data collection. Figure 4 
illustrates the rankings provided by Allen for each problem. 

 
Problem C Problem B Problem D Problem A Problem E 

C2 (algebraic) B3 (algebraic) D4 (pictorial) A4 (pictorial) E2 (pictorial) 
C4 (perceptual) B4 (pictorial) D1 (inductive) A2 (algebraic) E4 (algebraic) 
C3 (pictorial) B2 (perceptual) D2 (algebraic) A3 (perceptual) E1 (inductive) 
C1 (inductive) B1 (inductive) D3 (perceptual) A1 (inductive) E3 (perceptual) 

Figure 4. Argument rankings of provided by Allen 
 
Allen’s comments on the arguments were coded referring to the table of codes (see Table 2). Specifically, each 

of Allen’s comments that referred to the mode of representation, accepted statements, or the mode of argumentation 
was coded with the corresponding capitalized letters, MR, AS, and MA, respectively, followed by a number that 
denotes the specific feature of that aspect. 
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Table 2. Table of codes 
Mode of Representation Accepted Statements Mode of Argumentation 
Pictorial: MR1 Authority: AS1 Direct: MA1 
Narrative: MR2 Example: AS2 Perceptual: MA2 
Numerical: MR3 Imaginary: AS3 Inductive: MA3 
Algebraic: MR4 Math Fact: AS4 Transformational: MA4 
  Assumption: AS5 Ritual: MA5 
  Opinion: AS6 Deductive: MA6 
i). “P” denotes comments that didn’t refer to the mode of representation, accepted statements, or 

mode of argumentation.  
ii). “NA” denotes comments in which the subject claimed that he/she didn’t understand the 

argument and didn’t offer any explanation. 
iii). A notation “-” was added behind the code to indicate that this feature made the argument less 

convincing to the subject. 
 
The following clarifications are important in understanding the coding procedure. 
1) Not all comments could be coded according to the CMA framework. In cases where the factors that 

contributed to the judgment were not identifiable or were not about the mode of representation, accepted statements, or 
mode of argumentation, the comment was coded “NC,” denoting that there were non-CMA factors that need to be 
further examined. It was denoted as having non-CMA factors since those reasons were not associated with any 
particular aspect of the argument. For example, the comment “it’s not straightforward enough” was coded “NC” since 
it could apply to many different types of arguments. There were also cases when the subject indicated that he/she was 
not able to understand an argument. We used “NA” to denote such comments, suggesting that the subject was unable to 
provide an evaluation of the argument. 

2) A certain feature could make an argument more or less convincing to the subject. To distinguish the effects 
different features had, a “-” was added to the end of a code if the identified feature made the argument less convincing 
to the subject. 

3) A comment could refer to more than one feature or factor of an argument and hence could be multi-coded. 
For example, Allen made the comment that “it uses formulas which I know are fact, and I like seeing fact” in his 
explanation of why he considered Argument C2 valid. This comment was coded “AS4” and “MR4” since it was based 
on a mathematical fact as an accepted statement, which was expressed in an algebraic form. 

4) There were scenarios in which it was difficult to judge what an argument meant based on the comment. In 
this case, the conversation before and after the comment was studied to determine the contextual meaning of the 
comment. For example, when reading the comment, “I’m not seeing very many supporting arguments,” it was unclear 
what were the “supporting arguments” referred to by Allen. However, in reading the conversation that happened before 
the comment, where Allen talked about the need to see formulas in a convincing argument, it became clear that Allen 
was referring to mathematical facts as what he called “supporting arguments.” Therefore, this comment was coded as 
“AS4.” 

The occurrence of each code was then summed and added into Figure 5 to describe the aspects and features of 
the arguments that influenced Allen’s evaluation of their validity.  

 
Total number of references to the mode of representation: 27 
 Pictorial Narrative Numerical Algebraic   
Positive 12 1 1 12   
Negative 0 1 0 0   
Total number of references to the accepted statements: 47 
 Authority Example Imaginary Math Fact Assumption Opinion 
Positive 0 18 2 17 0 0 
Negative 0 1 1 0 0 8 
Total number of references to the mode of argumentation: 7 
 Direct Perceptual Inductive Transformational Ritual Deductive 
Positive 0 2 0 3 1 0 
Negative 0 1 0 0 0 0 

Figure 5. Aspects and features of arguments that influenced Allen’s evaluation of their validity 
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As shown in Figure 5, the total number of comments that focused on the mode of representation, accepted 
statements, and mode of argumentation were 27, 47, and 7, respectively, indicating that the accepted statements 
seemed to have the greatest impact on Allen’s evaluation of the arguments. Among all types of accepted statements, 
Allen found that math facts (well known existing mathematical results) and examples (results from an immediate test) 
were reliable sources to establish an argument, each of which was referred to 17 and 18 times. His explanation was 
heavily rooted in the discussion of specific mathematical concepts (e.g. specific numbers’ properties, specific 
geometric properties, meaning of graphs, etc.) instead of personal assumptions or opinions. This was highlighted by his 
claims that “when someone is trying to convince me of something, I would like facts” and “giving concrete numbers 
and facts and stating their observations of what they did the experiment on” would make an argument convincing. In 
addition, he clearly emphasized that “opinions and people doing things that I have not personally seen” did not make 
an argument valid to him. Similar statements were mentioned 8 times during the interview. Overall, Allen’s comments 
demonstrated his need to see specific and concrete evidence in an argument in order to consider it valid. 

The representation of arguments also influenced Allen’s judgment. In particular, he indicated that pictorial and 
algebraic representations contributed to the validity of arguments. Each representation was referred to 12 times during 
the interview. Allen claimed that he loved “formulas, which are always in my mind second to visual representations.” 
He also suggested that if “there’s a combination of visual diagrams and formulas, that would be fabulous, that would 
be perfect.” This tendency was backed up by his capability to represent variables with symbols and manipulate the 
symbols fluently, as well as the capability to connect graphs to the content of the problem.  

Allen made fewer comments on the mode of argumentation. Among all the comments he made, only 7 referred 
to a certain way to connect the accepted statements to the conclusion of an argument. In 2, 3, and 1 case(s), 
respectively, Allen found a perceptual, transformational, and ritual reasoning valid. Allen was unable to recognize that 
showing a few examples would not prove a conjecture is always true. He considered an argument convincing “because 
it gives examples that worked.”  

In addition, Allen had personal standards that could not be captured by the CMA framework for deciding 
whether an argument was convincing. There were 14 comments that were coded as non-CMA factors, i.e. “NC.” Nine 
of these comments concerned the simplicity of an argument, using terms such as “straightforward,” “simple,” and 
“quick” to explain why he was or was not convinced, while the other 6 comments referred to the clarity of the 
arguments (e.g. “There’s always the showing, they’re working it out”). These comments suggested that the pursuit of 
simplicity and clarity might sometimes override his preference on other aspects of an argument. For example, although 
Allen had repeatedly addressed the preference of seeing formulas, he claimed, in evaluating Argument D2, that “this is 
not straightforward… because it is a longer and more complicated and not straightforward enough formula” in 
explaining why he did not consider it convincing. 

A clearer picture of Allen’s rationale for evaluating mathematical arguments was formed when combining non-
CMA factors and those characterized by the CMA framework (see Figure 6). Allen viewed arguments that utilized 
precise descriptions and involved simple reasoning procedures as convincing. To him, known mathematical facts and 
concrete examples were the most straightforward accepted statements, while the pictorial and algebraic representations 
were the clearest ways to describe and relate those examples. However, since Allen was not yet able to reflect on the 
rigidness of logic embedded in an argument, the mode of argumentation was not among his major focuses. Arguments 
that used transformation, perceptual, and ritual reasoning might have been perceived as convincing by him. An 
argument was convincing to him as long as the reasoning looked “straightforward” to him, regardless of its logical 
rigidity. 

 

 
 

Figure 6. Illustration of Allen’s rationale for evaluating mathematical arguments 
 
With this platform, Allen’s rankings of the arguments (see Figure 4) became more sensible. In Problem C, the 

clarity of the accepted statements provided in each argument determined their ranking. The accepted statements 
provided were ranked in the following order: C2 (the triangle area formula), C4 (imaginary triangle made by wire), C3 
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Perceptual 

Transformational Convincing 
arguments Simple procedure 

Precise description 

Examples, Facts 
 

(Visual, Symbolic) 



9 

(drawn triangle within a transformation process), and C1 (a collection of triangles). Among these, the formula was the 
most simple and clear; the imaginary triangle made by wire was less clear, but also very simple; the triangle within a 
transformation process looked more complex; while the collection of triangles offered a mix of information and 
“trip[ped] [Allen] up for the first few seconds.”  

Arguments in Problem B were also ranked based on the simplicity and clarity of the evidence provided by 
them. Compared to his ranking for Problem C, the only difference was that the rankings of the visual and perceptual 
arguments were switched. Allen’s explanation was that the image of the triangle made by wire was clearer to him than 
the image of a football field. Therefore, the argument based on the football field scene was less convincing to him. 

In the other three arguments, Allen found the visual arguments to be the most convincing options while the 
algebraic arguments were ranked lower. A possible explanation was that in Problem C and B, both algebraic arguments 
contained well known mathematical facts (triangle area formula and the Pythagoras Theorem); however, in Problems 
D, A and E, the algebraic expressions were not well known formula or theorems but were used to represent the 
variables’ relationships in the problem. Therefore, Allen’s preference on algebraic expressions was not resolute but 
depended on the exact use of such expressions. 

The different rankings of the inductive arguments across the problems could also be explained. Notice that in 
Problems A, B and C, the inductive arguments were considered the least convincing. This was because there was no 
actual example given in A1 and B1, while in C1, the examples seemed “confusing” to him. On the contrary, since D1 
and E1 discussed more details about the examples, they were considered more convincing. 

Overall, we found that the analysis of Allen’s responses during the interview provided insights into the bases 
of his reasoning in determining the validity of different mathematical arguments. His reasoning was too complicated to 
be simply labeled as pro-algebra, pro-pictorial, or pro-induction. The pursuit of straightforward statements, the need to 
see mathematical facts and concrete examples as evidence, and preference towards visual and symbolic representation 
were all embedded in Allen’s rationale in the evaluation of mathematical arguments, and all of them needed to be 
considered, in a specific context, to understand how Allen determined if an argument is convincing. 

 
Summary of Findings 

Seven other subjects’ interview data were analyzed using the same process as illustrated in Allen’s case. 
Combining the data from each subject, it is clear that the subjects’ view of which argument is convincing is highly 
distinct in every problem. Table 3 illustrates the differences (an argument received a score of 1, 2, 3 and 4, depending 
on the ranking by a subject, with 1 being the most convincing). There is no clear pattern that any argument was 
considered convincing or not convincing by the subjects. Every argument (except for E3) was considered as the most 
convincing by some subjects while ranked as the least convincing by others. 

 
Table 3. Summary of the subjects’ argument rankings 

 Allen Blake Cindy Deb Emily Fiona Grace Heather 
A1 4 1 3 2 4 4 4 2 
A2 2 2 2 1 1 2 1 4 
A3 3 3 4 4 3 1 2 3 
A4 1 4 1 3 2 3 3 1 
B1 4 2 2 2 1 4 3 2 
B2 3 1 1 4 4 1 4 1 
B3 1 3 4 3 2 3 1 4 
B4 2 4 3 1 3 2 2 3 
C1 4 2 1 3 2 3 3 1 
C2 1 4 2 2 4 2 1 3 
C3 3 3 4 1 1 4 2 2 
C4 2 1 3 4 3 1 4 4 
D1 2 2 1 3 4 2 1 1 
D2 3 3 3 4 1 3 2 2 
D3 4 1 2 1 3 4 4 3 
D4 1 4 4 2 2 1 3 4 
E1 3 2 1 1 4 1 1 3 
E2 1 1 4 3 3 3 3 1 
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E3 4 3 3 2 2 4 4 2 
E4 2 4 2 4 1 2 2 4 

 
The subjects’ explanations were analyzed to investigate what factors might have impacted their judgment. 

Table 4 shows the number of references in each subject’s explanation regarding each of the three aspects of arguments. 
The numbers in Table 4 suggest that the subjects paid the most attention to the accepted statements, followed by the 
mode of representation, with mode of argumentation being the least attended to among the three. Specifically, the 
accepted statements were the most referred aspect by 6 subjects, while the mode of argumentation was the least 
referred aspect by 7 subjects. 

 
Table 4. Number of references regarding each aspect of arguments by the subjects 

 Allen Blake Cindy Deb Emily Fiona Grace Heather Total 

Mode of 
Representation 27 32 22 10 37 14 23 29 194 

Accepted 
Statements 47 27 46 21 46 27 30 27 272 

Mode of 
Argumentation 7 3 8 11 19 15 8 10 81 

 
Table 5 further illustrates the subjects’ perspective on what features of each aspect of the arguments 

contributed to their validity. The similarities and differences among the subjects are further specified in the following 
discussion. 

 
Table 5. Summary of the subjects’ preferred features of arguments 

 Accepted 
Statement 

Mode of 
Representation 

Mode of 
Argumentation 

Non-CMA factors 

Allen Examples, 
Math Facts  

Pictorial, Algebraic Transformational, 
Perceptual, Ritual 

Simple procedure, 
Precise description 

Blake Examples, 
Imaginaries 

Pictorial, 
Numerical, 
Narrative 

Perceptual, Ritual Easy to understand, 
Non-procedural 

Cindy Examples, 
Imaginaries 

Pictorial, 
Numerical 

Perceptual, 
Inductive 

Easy to understand, 
Familiar procedure 

Deb Examples Pictorial Transformational Easy to understand, 
Familiar procedure 

Emily Examples, 
Math Facts 

Algebraic, 
Numerical 

Deductive, 
Transformational 

True for all cases 

Fiona Examples, 
Imaginaries 

Pictorial, Narrative Perceptual Easy to understand, 
Relatable scenario 

Grace Examples, 
Math Facts 

Algebraic, 
Numerical 

Ritual, Perceptual, 
Transformational 

Detailed procedure 

Heather Examples Pictorial, Narrative, 
Numerical 

Inductive, Ritual, 
Transformational 

Easy to understand, 
Simple procedure 
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Subjects’ views on accepted statements 
The most prominent similarity among the subjects was that they all considered findings from testing a few 

examples as reliable accepted statements. This was observed in the comments from every subject on several (if not all) 
arguments.  

Subjects’ views on the use of mathematical facts were less consistent. Allen, Emily, and Grace indicated that 
they were likely to be convinced if an argument was based on a known mathematical fact. On the contrary, Blake 
seemed unwilling to use any established result and preferred exploring the problem from scratch. The other four 
subjects acknowledged that some known results (e.g. the triangle area formula) helped convince them an argument was 
true; however, they only acknowledged these results as something they had heard about instead of as known 
established mathematical facts.  

The subjects’ views of imaginaries (i.e. mental image created from recalling previous experience) also 
differed. To Blake, Cindy, and Fiona, imaginaries were a major source of evidence, while in Emily’s view, an 
individual’s brain can “skew everything” so imaginaries were definitely unreliable. To Allen, it depended on whether 
the imaginary was adequately clear to him. 

Overall, the use of examples seemed to uniformly contribute to the subjects’ evaluation of arguments, while 
each individual’s view on the use of other sources, such as known mathematical facts and imaginaries, differed. 

 
Subjects’ views on mode of representation 

When looking at the mode of representation, pictorial representation was referenced the most and six subjects 
stated that visual aids could make an argument more convincing, especially when the image was simple and 
understandable to them. However, Emily and Grace expressed that they were unlikely to be convinced by pictorial 
arguments. Emily claimed that she was concerned that pictures and figures might misrepresent the problem, while 
Grace believed pictorial illustration must be accompanied with narrative explanation in order to be persuasive.  

Although not as commonly mentioned as pictorial representation, numerical representations were also often 
positively valued by the subjects. Five of the subjects believed a numerical representation makes an argument more 
convincing, and no subjects claimed that a numerical representation made an argument less convincing.  

Narrative representation was the least commented type of representation. Some subjects demonstrated a higher 
need for narrative explanation than others. For example, Grace suggested that visual illustration alone was not 
convincing unless it was also accompanied by a narrative explanation. In contrast, Allen preferred to read equations 
and examine graphs and did not consider an argument convincing if it was too “wordy.” Narrative representation could 
help the subjects to understand an argument. At the same time it could be difficult to use a narrative to describe some 
concepts or examples as precisely as using numerical, visual, or symbolic representations. Consequently, the subjects’ 
evaluations of narrative descriptions depended highly on whether they understood the concepts embedded in narratives 
without seeing any specific numbers, images, or symbols, or whether they understood the numbers, images, or symbols 
in the absence of a narrative description.  

Algebraic expressions were usually more abstract than ideas represented in the other three forms. Compared to 
the other three types of representations, the subjects showed the greatest differences in their views about algebraic 
representation. Students who understand the embedded ideas of algebra expressions often appreciate how clear and 
concise such expressions are in communicating ideas. For Emily, the algebraic representation could show the 
conjecture was true in every case. For Allen, the algebraic representation demonstrated the ideas clearly and concisely. 
For Grace, the algebraic representation helped her see the precise steps of the argument. Therefore, these three subjects 
found the algebraic representation positively contributed to their conviction. On the contrary, to those who had not yet 
adapted to algebraic representations, such arguments looked unintuitive and difficult, and hence were not convincing to 
them. For example, Blake considered algebraic terms confusing and not appropriate for his age group. Heather also 
found algebraically expressed theorems too abstract to communicate meaningful ideas. As a consequence, arguments 
using the algebraic representation were unconvincing to the two. The other three subjects neither claimed algebraic 
representations as helpful, nor did they find them confusing. Whether an argument was written by algebraic 
representations did not seem to contribute much to their evaluation of the mathematical arguments. 

 
Subjects’ views on mode of argumentation 

The mode of argumentation was the least commented aspect of arguments for almost every subject. Among the 
rare mentions of this aspect, Emily was also the only subject who found algebraic deduction the most reliable way to 
guarantee the conclusion of an argument to apply to general cases. In fact, she was the only subject who insisted that a 
convincing argument must show the conjecture was always true without any exception. According to the other 
subjects, this condition was not a requirement for a convincing argument. 



12 

Nonetheless, several subjects (Deb, Emily, Fiona, and Grace) articulated that showing a few examples might 
help them understand an argument, but were not sufficient to convince them that a conjecture was true. This suggested 
that some students were aware of the limitations of induction in proving general validity. Although they were not yet 
able to appreciate deductive reasoning, they had developed the ability to understand generic examples. For example, 
Deb could visualize that some geometric properties are stable when the shape was changing in particular ways. Allen 
could see that some values in an argument could be replaced by another value without violating the validity of each 
step in the argument. Overall, it was observed in five subjects’ explanations that arguments that adopt transformational 
reasoning, and in particular, detecting and applying patterns from analyzing specific ideas, were considered 
convincing. 

Perceptual connection was also applied by several subjects (including Allen, Blake, Cindy, Fiona, and Grace). 
Perceptual connection relates a given mathematical problem to imaginaries created from recalling previous 
experiences, and in many cases, such a connection was not precisely described, but was perceived by the subjects (e.g. 
by using a metaphor). Emily was the only subject who pointed out such a connection might not be a reliable way to 
build an argument. 

Lastly, although ritual operations were rarely mentioned, they never contributed negatively to the subjects’ 
evaluation of any argument in their explanations. 
 
Non-CMA factors 

Non-CMA factors played an important role in the subjects’ decision making and could be a major cause of the 
distinct evaluations of the same argument by different individuals. 

Emily seemed to be the only person who believed a convincing argument should be one that proved the 
conjecture was always true. For the other subjects, this was not a guiding principle. This result is consistent with 
findings of existing research (e.g. Hersh, 2009; Selden, A., & Selden, 2003). Many subjects (Blake, Cindy, Deb, Fiona, 
and Heather) determined the credibility of an argument by examining how “easy” it was to understand it. However, 
there were differences in how they determined an argument is easy to understand. Blake found an argument easy to 
understand if it used easy language, easy examples, and easy pictorial illustrations. Cindy and Deb found an argument 
easy to understand if the concepts used in the argument and the steps in the reasoning procedure were familiar to them. 
Fiona considered an argument easy to understand only if the argument was built upon a real life scenario (as opposed 
to classroom experience) to which she could relate. Heather was able to appreciate more complex examples and 
pictorial demonstrations; however, she preferred an easy argument that did not involve a complex procedure (e.g. 
multiple steps). 

Allen and Grace were the only two subjects who didn’t claim that a convincing argument must be easy to 
understand. Allen claimed that he didn’t have much difficulty understanding any argument used in the interview. 
Although he still personally preferred simple or “straightforward” arguments, he did not think whether an argument is 
easy to understand determines whether it is convincing. Similar to Allen, Grace also demonstrated an understanding of 
a wide range of arguments, but paid more attention to the details of arguments. Unlike Allen, Grace found that 
arguments with minimum wording often require readers to fill in the gaps of reasoning and hence are open to 
interpretation. She did not consider such argument to be convincing. For example, she did not consider pictorial 
illustrations alone to be convincing, since such illustrations must be accompanied with narrative explanations in order 
to avoid misinterpretation of their precise meanings.  

 
Summary 

The analysis of the subjects’ responses during the interviews revealed great differences among individuals in 
how they determined if an argument was convincing. Yet, an overall pattern was also observed: whether the subjects 
agreed with the accepted statements in an argument had the largest impact on their evaluation of the argument, 
followed by the mode of representation of the argument, while the mode of argumentation seemed to be the least 
considered aspect in their decision making. 

 
Table 6. Similarities and differences in how the subjects determine if an argument is convincing 

 Similarities Differences 



13 

Accepted 
Statements 
 

 Findings based on testing a few 
examples were convincing. 

 Authority, assumption and 
personal opinion were rarely 
referred to as convincing. 

 Imaginaries and mathematical 
facts might or might not be 
viewed as reliable sources of 
evidence. 

Mode of 
Representation 
 

 Numerical and narrative 
arguments were usually easier to 
understand. 

 Seeing a few numbers in an 
argument was helpful in most 
cases. 

 Pictorial illustration was helpful if 
the provided image was 
understandable. 

 Most subjects were not aware that 
algebraic representation denotes 
general cases. 

 Pictorial illustration could be 
sufficient or not sufficient to 
demonstrate the validity of a 
conjecture. 

 Narrative descriptions could be 
necessary or unnecessary. 

 Algebraic expression could be 
concise and clear or confusing and 
meaningless. 

Mode of 
Argumentation 
 

 Deduction was rarely used or 
considered necessary. 

 Transformation and perceptual 
connection was widely adopted. 

 Ritual operation was rarely 
considered but was never 
unconvincing. 

 Induction could be viewed as 
convincing, convincing in some 
situations, or not convincing at all. 

Non-CMA 
factors 
 

 Most subjects didn’t focus on 
whether an argument could prove 
the conjecture was always true 
without any exception. 

 Whether an argument was easy to 
understand was taken into 
consideration by some but not all 
subjects. 

 Some subjects found arguments 
embedded in a familiar context 
more convincing. 

 The subjects had different 
demands for the clarity of 
arguments. 

 
Table 6 summarizes the similarities and differences in how the subjects determine if an argument is 

convincing. Consistent with existing research (e.g. Knuth, Choppin, & Bieda, 2009), when considering the accepted 
statements, the analysis of interview responses revealed that an argument based on empirical testing of examples was 
often considered convincing by the subjects. However, the subjects’ views towards the use of mathematical facts and 
imaginaries differed.  

In considering the mode of representation, the subjects often found numerical and narrative arguments easier 
to understand than algebraic ones. Pictorial illustrations could be helpful or confusing depending on the images or 
diagrams provided. Only one subject realized that the algebraic representation had the potential to prove the general 
validity of a conjecture. Some subjects found algebraic expressions concise and clear, while others viewed them as 
confusing and meaningless.  

In considering the mode of argumentation, only one subject was aware that a valid argument must show the 
conclusion was always true without any exceptions. Half of the subjects realized argumentation based on induction 
was not reliable. Transformational and perceptual reasoning was widely viewed as convincing.  

Lastly, several non-CMA factors were found to be a contributing factor to the subjects’ evaluation of the 
arguments. The subjects’ interview responses revealed that the perceived complexity of the arguments, students’ 
familiarity with the contexts used in the arguments, and the clarity of the explanation presented seemed to have 
impacted the subjects’ evaluation and judgment. 
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Implication for Research and Practice 
Similar to other studies based on the self-reflection of subjects, data obtained in this study had limitations in 

determining whether subjects’ explanations actually reflected the rationale of their decisions (Dunning, Heath, & Suls, 
2005). Additionally, the study used the number of subjects’ comments on a certain feature of arguments as the indicator 
of whether the feature was an important factor in the subjects’ decisions, which also involved a certain degree of bias 
since the topic of such comments was influenced by the flow of conversation occurring around when the subjects were 
making their judgment. Therefore, the value of the study can only be discussed with acknowledgement of these 
limitations. 

The existing trend of proof instruction continues to shift away from teaching students “the right way” of doing 
proofs and towards developing their abilities to generate arguments that can be used to convince oneself and others 
(Hanna & Jahnke, 1993; NCTM 2000; Healy & Hoyles, 2000; Stylianides & Stylianides, 2008b; Tall et al., 2012). 
Therefore, the process of nurturing mathematical reasoning should be built upon an understanding of how students 
convince themselves in the first place. 
Reflection on what it means to develop mathematical reasoning “locally” 

The explanations provided by eight 8th grade students in the comparison of arguments within and across 
multiple contexts allowed researchers to gain insights of the bases of their reasoning. By coding students’ explanations 
of how they evaluate the validity of mathematical arguments according to the CMA framework, results of the study 
suggested that the accepted statements of an argument had a greater influence on students’ evaluation of the 
mathematical arguments than its mode of representation or mode of argumentation. Since the accepted statements are 
content specific while the mode of representation or mode of argumentation are more general characteristics, this 
finding is consistent with existing studies that suggest students develop an understanding of proof in local contexts 
(e.g. Freudenthal, 1971, 1973; Reid, 2011).  

Results of the study suggested that helping students identify what accepted statements in a mathematically 
valid argument can be is an essential step in fostering their mathematical reasoning capacity. One finding of this study 
is that students’ confidence in an argument was strongly influenced by the examination of concrete examples. This 
conclusion coincided with views of using examples and counterexamples to help students understand the construction 
of mathematical structures in a heuristic way (e.g. Lakatos, 1976; Knuth, Choppin, & Bieda, 2009; Stylianides & 
Stylianides, 2008b; von Glasersfeld, 1994). Although using examples to verify a statement is not a rigorous way to 
prove a statement, it does provide a concrete context for students to examine the mathematical concepts and 
procedures involved in the argument, and hence, to help them understand the problem better (Balacheff, 1988; de 
Villiers, 2003; Simon, 1996).  

Results of the study also indicated that misunderstanding or rejection of mathematical facts often led to denial 
of mathematically valid arguments. Why can Side-Angle-Side imply congruency of triangles? Why does the 
distributive law hold for whole numbers, rational numbers, and real numbers? Why do you multiply the probability of 
each event to find out the likelihood of several independent events happening simultaneously? Related results and 
procedures are often memorized by students but the whys are often not investigated. Therefore, it is impossible for 
students to be fully convinced by arguments built upon these fundamental mathematical properties and results without 
a thorough understanding of such properties and results in the first place. 

Since the validity of fundamental properties and results needs to be studied in a case-by-case manner, fostering 
proof capacity must be initiated in multiple strands of school mathematics. Students’ understanding of the 
mathematical reasoning process grows concurrently with their experience in conducting such reasoning in different 
contexts. Only when their reasoning capacity within each context reaches certain levels are they able to identify 
features generally possessed by convincing arguments in these contexts. Therefore, results of the study suggest that it 
is more promising to develop mathematical reasoning based on an understanding of the fundamental properties and 
results within each mathematical content area, as opposed to authorizing a standard procedure that must be adopted in 
all areas of mathematics.  

 
Reflection on the theoretical development of reasoning classification frameworks 

This study offered an explanation of why students’ reliance on a certain type of argument is inconsistent across 
multiple contexts (Harel & Sowder, 1998; Healy & Hoyles, 2000; Author, 2013). It was evident in the results of this 
study, where those interviewed demonstrated different perceptions of the same type of arguments (e.g. inductive 
argument) in each problem. The status of pictorial representations’ impact on students’ conviction was also 
inconclusive. However, by analyzing the subjects’ explanations, this study suggested that this inconsistency is caused 
by the mismatch of the criteria used by researchers to categorize the arguments and the factors considered by the 
subjects in evaluating an argument. For instance, a student may consider an inductive argument convincing in one 
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context but another inductive argument not convincing in another context. While researchers may detect an 
inconsistency in the student’s reasoning since both arguments are classified as “inductive,” such inconsistency did not 
exist in the perspective of the student since he/she never noticed the common inductive feature of both arguments. 
Instead, the different evaluations might occur due to the fact that the student found the examples in one argument 
understandable, while the examples in the other argument were unfamiliar. So although it seemed that the student 
offered inconsistent views of whether inductive arguments are reliable, his/her need for familiar examples to verify the 
validity of an argument was consistent across content areas.  

The development of argument classification models has often focused on two aspects of an argument, i.e. the 
mode of representation (e.g. algebraic vs. pictorial) and mode of argumentation (e.g. inductive vs. deductive). 
However, proof learners often pay more attention to the other aspect (i.e. the set of accepted statements of an 
argument). As such, students who haven’t yet developed the ability to compare mathematical arguments across the 
content areas are unable to see the features researchers have used to label arguments. Instead, their evaluation of an 
argument was rooted in their understanding of its specific mathematical topic (e.g. whether they agree with the set of 
accepted statements). 

With an emphasis on local development of mathematical reasoning ability, the absence of content specific 
proof/argument classification models becomes more critical. Considering the complexity of individual differences 
identified by this study, making any general conclusions to suggest certain kinds of arguments as more (or less) 
convincing to students is oversimplifying students’ thinking patterns in argument evaluation. Current models 
measuring students’ reasoning maturity or schemes are often based upon the synthesis of what was known about 
mathematical reasoning as a generalized method (e.g. Harel & Sowder, 1998; Simon, 1996; Tall et al., 2012; Waring, 
2000). However, theories within specific content areas, especially areas other than geometry, remain underdeveloped. 
There are limited frameworks that synthesize how to make specific mathematical results convincing to students. 
Consequently, theories have not been built upon the features of local content and learners’ understanding of such 
content. This is not to deny the existence of more general patterns in students’ development of reasoning ability across 
the content areas. However, merely identifying these general patterns might not be sufficient to understand students’ 
development of disciplinary reasoning skills and, as such, is limited in the quality of guidance it provides to support 
curricular instructional designs. Therefore, there is a critical need to develop content specific proof/argument 
classification and development models, which, perhaps, should also take some personal factors (e.g. the non-CMA 
factors identified in this study) into consideration. 
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Appendix I. Mathematics problems and arguments used in the interviews 
 
PROBLEM  A0F

1 
 
Shaina claimed that: 
 
“A multiple of 6 must also be a multiple of 3.” 
 
Argument A1: I’ve tried plenty of multiples of 6 (like 12, 60, 606, etc.) and found they are multiples of 3 as well. So I 

am sure that Shaina’s statement must be true. 
 
Argument A2: Any multiple of 6 can be written as 6n. We know that 6n = 3•2n, which is a multiple of 3. Therefore a 

multiple of 6 must also be a multiple of 3. 
 
Argument A3: If the total number of cookies is a multiple of 6, then we can put them into several boxes where each 

box contains 6 cookies. We can further divide each box into 2 packages, where each package contains 3 
cookies. Now all the cookies are put into packages of 3. Therefore, the total amount of cookies must also be a 
multiple of 3. 

 
Argument A4: The total number of square cards below is a multiple of 6: 

 
We can rearrange the squares in this way: 

 
Now we can see that a multiple of 6 must also be a multiple of 3. 

 
 
 
PROBLEM  B 
 
Ryan claimed that: 
 
“The diagonal of a rectangle must be longer than each of its sides.” 
 
Argument B1: I’ve drawn several rectangles and measured the length of their sides and diagonals. I found that the 

diagonal of any of those rectangles is longer than any side of the same rectangle. So Ryan’s statement must be 
true for all rectangles. 

 
Argument B2: Imagine that you are standing on the corner of a football field. Then the diagonal of the field is 

definitely longer than any of its sides. So Ryan’s claim must be right. 
 
Argument B3: As shown in the figure below, ABCD is a rectangle. Since ∠A = 90°, 

then by the Pythagorean Theorem,  
BD^2 = AB^2 + AD^2.  
So BD^2 > AB^2 and BD^2 > AD^2  
(The notation X^2 means the square of X. For example, BD^2 means the 
square of BD). Therefore, BD is longer than AB and longer than AD. 

                                                 
1 An item similar to Problem A was also used in Stylianides and Stylianides (2008b). 
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Argument B4: Suppose ABCD is a rectangle. Draw a circle using B as the 

center and BD as the radius. From the figure shown, we can see 
that BD = BQ = BP. Since BC < BP and BA < BQ, then both BA 
and BC are shorter than BD. Therefore, the diagonal of a rectangle 
must be longer than any of its sides.  

 
 
 
PROBLEM  C 
 
There are two triangles. The lengths of the three sides of Triangle I are A, 
B, and C and the lengths of the three sides of Triangle II are a, b, and c. 
Jennifer claims that: 
 
“If A > a, B > b and C > c, then the area of Triangle I must also be larger than Triangle II.” 
 
Argument C1: If A = B = C = 2, a = b = c =1, then Triangle I is obviously larger than Triangle II. I also tried many 

other cases (as shown in the figures below) and found Triangle I always has an area larger than that of Triangle 
II. So I am sure Jennifer's claim must be correct. 

 
 
Argument C2: We all know that the area of a triangle equals 1/2 of the product of its base and height. As shown in the 

figures below, the area of Triangle I = BH/2, and the area of Triangle II = bh/2. We know that B > b. In 
addition, since A > a and C > c, then it must be true that H > h. So BH/2 must be larger than bh/2. Therefore 
the area of Triangle I must be larger than the area of Triangle II. 

 
 
Argument C3: As shown in the figures below, since each side of Triangle II is shorter than the corresponding side of 

Triangle I, we can cut each side of Triangle I shorter and then compose Triangle II using the shortened sides. 
Therefore, the area of Triangle II must be smaller than the area of Triangle I. 
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Argument C4: Since each side of Triangle I is longer than the corresponding side of Triangle II, then the perimeter of 

Triangle I must also be longer than the perimeter of Triangle II. If we make the two triangles using wires, then 
it needs a longer wire to make Triangle I than Triangle II. Using a longer wire we can make a larger triangle. 
Therefore the area of Triangle I is definitely larger than the area of Triangle II.  

 
 
 
PROBLEM  D 
 
The sales tax rate of the state where Ravi lives is 5%. Ravi is buying a new bike in a local bike store and has a $20 
coupon1F

2. Ravi claims that: 
 
“I can always save $1 if the $20 coupon is applied before tax rather than after tax, regardless of the actual price 
of the bike.” 
 
Argument D1: Suppose the original price of the bike is $100.  

If the coupon is applied before tax, then Ravi needs to pay  
(100 – 20) × (1 + 5%) = 84 dollars.  
If the coupon is applied after tax, then Ravi needs to pay  
100 × (1 + 5%) – 20 = 85 dollars, which is $1 more than what he needs to pay if the coupon is applied before 
tax.  
I tried some other possible prices of the bike, such as $200, $500, etc., and found he always pays $1 less if the 
coupon is applied before tax. Therefore, I am sure Ravi’s claim is always right.  

 
Argument D2: Suppose the original price of the bike is x dollars.  

If the coupon is applied before tax, then Ravi needs to pay  
(x – 20) × (1 + 5%) = 1.05x – 21 dollars.  
If the coupon is applied after tax, then Ravi needs to pay  
x × (1 + 5%) – 20 = 1.05x – 20 dollars.  
Notice that (1.05x – 20) – (1.05x – 21) = 1. Therefore, Ravi always saves one more dollar if the coupon is 
applied before tax rather than after tax. 

 
Argument D3: If the coupon is applied before tax, then Ravi doesn’t need to pay the tax for the $20 discount. If the 

coupon is applied after tax, then he needs to pay the tax of the original price of the bike. Notice that $20 × 5% 
= 1. Therefore Ravi always saves one more dollar if the coupon is applied before tax rather than after tax. 

 
Argument D4: Let x be the original price of the bike and y be how much Ravi actually needs to pay (after applying 

the coupon and tax). Based on calculation, the graph below 
is generated by a graphing calculator to illustrate the two 
situations: the solid line represents how much Ravi needs 
to pay if the coupon is applied after tax; the dashed line 
represents how much he needs to pay if the coupon is 
applied before tax. From the graph, we can see that the 

                                                 
2 The assumption that a bike costs more than $20 was not stated in the problem to test if subjects themselves might raise this question. 
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solid line is parallel to the dashed line and is always 1 unit above it. Therefore, Ravi can always save one more 
dollar if the coupon is applied before tax rather than after tax. 

 
 
PROBLEM  E 
 
There are some white and orange ping-pong balls in a box. You cannot see what’s inside the box but you will get a 
reward if you pick out an orange ping-pong ball from the box. Jenna claims that:  
 
“If the number of white ping-pong balls and the number of orange ping-pong balls are both doubled, the chance 
for you to get a reward still stays the same.” 
 
Argument E1: Suppose there are 2 orange ping-pong balls and 3 white ping-pong balls in the box, then the chance for 

you to get a reward is 2 out of 2+3, which is 40%. If the numbers of ping-pong balls of each color are both 
doubled, then there will be 4 orange ping-pong balls and 6 white ping-pong balls. Hence the chance for you to 
get a reward is 4 out of 4 + 6, which is also 40%. Therefore, the chance of winning the reward won’t change. 

 
Argument E2: As shown in the figure below, if the numbers of orange and white ping-pong balls are both doubled, the 

ratio between the ping-pong balls of the two colors will still be the same. Therefore, the chance of winning 
won’t change. 

 

…  …  

…  …  

 
Argument E3: When the number of orange ping-pong balls is doubled, the cases for winning the reward are also 

doubled. However, when the number of white ping-pong balls is doubled, the cases for not winning the reward 
are also doubled. As a result, the ratio of the cases of winning to the cases of not winning stays the same. 
Therefore, the chance of winning won’t change. 

 
Argument E4: Suppose there are n orange ping-pong balls and m white ping-pong balls in the box, then the chance for 

you to get a reward is n / (n + m). If the numbers of ping-pong balls of each color are both doubled, then the 
chance for you to get a reward becomes 2n / (2n + 2m), which is equal to n / (n + m). Therefore, the chance of 
winning the reward won’t change. 
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