
 

 

Paper Title:  Exploring Effects of Content Organization on Specific Algebraic Concepts: A 

Propensity Score Analysis 

Author(s): Derrick Saddler 

Session Title: Exploring Effects of Content Organization on Specific Algebraic Concepts 

Session Type: Brief Research Report 

Presentation Date: April 12, 2016 

Presentation Location: San Francisco, California 

 

 

Authors/presenters retain copyright of the full-text paper. Permission to use content from 

this must be sought from the copyright holder. 

 

 



1 

 

Exploring Effects of Content Organization on Specific Algebraic Concepts:  

A Propensity Score Analysis 

 

The Common Core State Standards for Mathematics (CCSSM) delineates the specific 

content students should learn while they are in high school (National Governors Association 

Center for Best Practices [NGA Center] and the Council of Chief State School Officers 

[CCSSO], 2010a, 2010b).  As educational leaders consider how to implement the CCSSM, an 

important consideration is how to organize the high school mathematics program into courses 

that provide a strong foundation for success at the post-secondary level. To assist in addressing 

this need, a group of mathematics experts from different levels of academia and workforce 

representatives were convened to develop model course pathways in mathematics based on the 

CCSSM.  One of the model course pathways is the U.S. traditional high school mathematics 

sequence that includes Algebra I-Geometry-Algebra II.   Researchers refer to this pathway as a 

subject-specific approach (Grouws, Tarr, Chávez, Sears, Soria & Taylan, 2013; Tarr, Grouws, 

Chávez, & Soria, 2013) because the primary content in each course in the sequence is related 

directly to the name of each course.  Another model course pathway suggested in the CCSSM is 

Mathematics I-II-III.    In the U.S., this course pathway is typically offered in curricula materials 

developed in response to standards-based reform documents (Senk & Thompson, 2003).   

Researchers refer to this pathway as an integrated mathematics approach because multiple 

mathematical strands are integrated in each course (Grouws et al., 2013; Tarr et al., 2013).  The 

content in each of the integrated mathematics courses includes number, algebra, geometry, 

probability and statistics.  
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 The high school portion of the CCSSM can be implemented using either a subject 

specific or integrated course pathway.  The decision regarding which approach to use is made by 

state or local education agencies.  However, no information is provided as part of the CCSSM 

document about the advantages or disadvantages of either approach.  Furthermore, little research 

provides comparison of the mathematics performance of high school students who learn from 

subject-specific and integrated course pathways (NMAP, 2008).  The most recent studies that 

relate high school mathematics content organization to students’ achievement is the Comparing 

Options in School Mathematics: Investigating Curricula (COSMIC) project.    

In the COSMIC project, researchers conducted three studies in which they investigated 

the effects of content organization, prior achievement, and curriculum implementation on high 

school students’ mathematics learning (Grouws et al., 2013; Tarr et al., 2013; Chavez et al., 

2013).  The researchers used multiple measures of learning to explore students’ achievement.  

The measures included a state-mandated 8th grade test, a nationally standardized assessment 

known as the Iowa Test of Educational Development (ITED), and two project developed tests 

referred to as the Problem Solving and Reasoning Test (PSRT) and the Test of Common 

Objectives (TOCO).   The state mandated 8th grade test was used as a measure of prior 

achievement.  The ITED assessments were 40-question multiple-choice tests that assess students’ 

computational and problem-solving skills in a number of mathematical contexts.  The PSRT 

assessments consist of topics deemed appropriate based on content analyses and feedback from 

external reviewers.  The tests were designed to assess nontrivial mathematical reasoning and 

problem-solving skills that focused on aspects of algebra, geometry, and statistics.  The TOCO 

assessments consist mainly of constructed-response items that assess concepts and skills 

common to the respective implemented curricula materials.   
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To examine students’ performance, in each study the researchers fit each outcome 

measure to a three-level hierarchical linear model (HLM).  A hierarchical linear model was used 

to take into account the structure of the data in which students are nested in classrooms and 

classrooms are nested in schools.  In the first study, Grouws et al. (2013) examined the 

performance of students from 10 schools.  Findings reveal students who enrolled in Integrated 

Mathematics I (n=1256) performed statistically better on the ITED, PSRT, and TOCO than 

students who enrolled in Algebra I (n=1365) with small effect sizes of 0.166, 0.453, and 0.308, 

respectively.  In the second study, Tarr et al. (2013) examined the performance of students from 

11 schools.  Findings reveal students who enrolled in Integrated Mathematics II (n=1171) 

performed statistically better on the ITED than students who enrolled in Geometry (n=2087) 

with a small effect size of 0.294.  However, no statistical mean differences in performance on the 

PRST and TOCO were found between the two groups.  In the third study, Chavez et al. (2013) 

examined the performance of students from 10 schools.  In this study, the researchers only 

reported results on the ITED and TOCO mathematics assessments.  Findings reveal students who 

enrolled in Integrated Mathematics III (n=892) performed statistically better on the TOCO than 

students who enrolled in Algebra II (n=1350) with a small effect size of 0.33. However, no 

statistical mean differences in performance on the ITED were found between the two groups. 

Collectively, findings from the COSMIC project reveal content organization and prior 

achievement were key factors in improving students’ learning in the first three years of high 

school.  However, the findings based on the different outcomes measures are not consistent 

throughout the three studies.  For example, on the ITED assessments, the researchers found 

statistical mean differences in students’ performance in the first and second year studies in favor 

of students enrolled in the integrated courses (Grouws et al., 2013; Tarr et al., 2013).  However, 
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in the third year study no statistical mean differences in performance on the ITED were found 

between students enrolled in the two curricular approaches (Chavez et al., 2013).  The findings 

based on the ITED assessments suggest differences exist in students’ learning during the first 

two years of high school, but the differences disappear by the time the students complete the 

eleventh grade.  On the project developed tests, and more specifically the TOCO assessments, 

the researchers found statistical differences in the first and third year studies in favor of students 

enrolled in the integrated courses (Grouws et al., 2013; Chavez et al., 2013).  However, in the 

second year study no statistical differences in performance on the TOCO were found between 

students enrolled in the two curricular approaches (Tarr et al., 2013).  The findings suggest 

statistical differences exist in students’ learning during the first and third years of high school, 

but no statistical differences exist in students’ learning during the second year of high school.  

More specifically, the findings suggest no statistical differences exist in students’ performance 

on common geometry concepts, but differences exist in students’ performance on common 

algebraic concepts in favor of students who enroll in integrated courses.    

There are some methodological shortcoming associated with the COSMIC project.  In 

particular, the researchers of the project conducted each of their studies on a single academic 

year.  However, an examination of students’ learning over multiple years can add new insights 

related to the influence of the entire curriculum sequence. Another methodological shortcoming 

is results from the COSMIC projects are based solely on the aggregate measures.  Findings based 

solely on aggregate measures can suggest whether one curriculum is better than another in 

improving students’ learning, but they do not reveal more nuanced differences such as specific 

content in which students benefited.  The COSMIC researchers could have identified more 

detailed differences in students’ performance if they performed an analysis of specific test items 
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or concepts (Cai et al., 2011; Huntley, Rasmussen, Villarubi, Sangtong, & Fey, 2000).  In sum, a 

longitudinal study that incorporates a pretest-posttest design in which specific test items are 

examined can be used to investigate students' learning growth over the course of the first three 

years of high school.   

Purpose & Research Question 

The purpose of this study was to statistically compare mathematics outcomes of high 

school students who learned from subject-specific course pathways (i.e., Algebra I-Geometry-

Algebra II) to a comparable group of students who learned from an integrated course pathway 

(i.e., Mathematics I-II-III).  The question this study investigated is “How does the algebraic 

performance of high school students enrolled in integrated course pathways relate to the 

algebraic performance of high school students enrolled in subject-specific course pathways?”  

Data Source: High School Longitudinal Study 

  The data from a large scale observational study conducted by the National Center for 

Education Statistics (NCES) known as the High School Longitudinal Study of 2009 (HSLS) was 

used in this study.  The HSLS collected data on the high school and postsecondary experiences 

of a nationally representative sample of high school students beginning with their ninth grade 

year.  The target population for the HSLS included all ninth-grade students who attended public 

and private schools in the United States.  The HSLS is a complex sample survey that includes 

21,444 students who were selected from 944 schools.  The study participants were administered 

a survey instrument and assessment at the beginning of their ninth grade year and at the end of 

their eleventh grade year.  The content of the student questionnaire included demographic 

information, such as race, gender, socioeconomic status, and students’ high school mathematics 



6 

 

courses.  Data from the HSLS student questionnaire were the primary data used in this study.  

Therefore, the unit of analysis for this study is the student.   

Sample groups 

The variable examined in this study is high school mathematics course pathways, 

specifically, the subject-specific pathway (Algebra I-Geometry-Algebra II) and the integrated 

pathway (i.e. Mathematics I-II-III).  The selected cases from the HSLS represent two well-

defined groups of high school students enrolled in the same course pathway and same school for 

the first three years of high school.  The HSLS public data set only inquires about courses 

students are enrolled in during their ninth grade year and their eleventh grade year.  As a result, 

there were no data indicating what course the students were enrolled in during their tenth grade 

year.  Therefore, the course pathways were inferred based on students’ ninth and eleventh grade 

mathematics course enrollment.   

One group represents high school students who learned mathematics from a subject-

specific course pathway (Algebra I-Geometry-Algebra II) and the other group represents high 

school students who learned mathematics from an integrated course pathway (Integrated 

Mathematics I-II-III).  To identify students in the subject-specific group, cases from the HSLS 

dataset that indicated students enrolled in Algebra I in the ninth grade and Algebra II in the 

eleventh grade, and not in Integrated Mathematics I in the ninth grade and Integrated 

Mathematics III in the eleventh grade were selected.  This yielded a sample with 4956 students 

who learned from a subject-specific course pathway.  Similarly, to identify students in the 

integrated group, cases that indicated students enrolled in Integrated Mathematics I in the ninth 

grade and Integrated Mathematics III in the eleventh grade and not in Algebra I in the ninth 
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grade and Algebra II in the eleventh grade were selected.  This yielded a sample with 73 students 

who learned from an integrated course pathway.    

Outcome Measures 

The HSLS administered a mathematics assessment to the participants at the beginning of 

their ninth grade year and again at the end of their eleventh grade year.  The 40-item assessment 

measured students’ performance on algebraic skills, reasoning and problem solving.   The 

assessment included a mixture of ninth and eleventh grade items in both stages of the test (Ingels 

et al., 2011).  The HSLS outcome measures include an item response theory (IRT) based 

estimate of the score for each participant on the full set of items.  In addition, the HSLS includes 

sets of clustered-items that represent a broad spectrum of algebraic concepts.   Each set of 

clustered-items represents four questions from the assessment and relates to specific content.   

The sets of clustered-items measured student proficiency with algebraic concepts and represent 

the outcome variables for the study (Ingels et al., 2010).  The following proficiency levels 

represents the specific algebraic concept. 

 Proficiency 1: Evaluate simple algebraic expressions and translate between verbal and 

symbolic representations of expressions, 

 Proficiency 2: Solve proportional situation word problems, find the percent of a number, 

and identify equivalent algebraic expressions for multiplicative situations, 

 Proficiency 3: Link equivalent tabular and symbolic representations of linear equations, 

identify equivalent lines and find the sum of variable expressions, 

 Proficiency 4: Solve systems of equations algebraically and graphically and characterize 

lines represented by a system of linear equations, and 

 Proficiency 5: Find and use slopes and intercepts of lines, and use functional notation. 
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The five levels are hierarchical in the sense that mastery of a higher level typically implies 

proficiency at the lower levels (Ingels et al., 2011).  The IRT-estimated reliability of the HSLS 

test is 0.92 after sample weights are applied.  This 0.92 reliability applies to all scale scores 

derived from the IRT estimation including the probability of proficiency scores.   

Methods 

Design  

This quantitative study employs a nonequivalent comparison group design.  The design is 

similar to a true experiment because subjects in each group took a pretest and a posttest.   

However, unlike a true experiment, subjects in the nonequivalent comparison group design were 

not randomly assigned to treatment and control groups.  Consequently, the main threat to the 

internal validity of a nonequivalent comparison group design is the possibility that group 

differences on the outcome variables will be a result of preexisting group differences rather than 

to a treatment effect, or selection bias (Gall, Gall, & Borg, 2007).  The main problem causing 

selection bias in non-randomized control trials is nonequivalence of treatment and control 

groups.   If differences between students who enroll in subject-specific and integrated course 

pathways can be eliminated, then presumably the threat of selection bias will be eliminated.  To 

reduce the threat of selection bias due to non-random assignment of students, a propensity score 

matching procedure will be employed 

Propensity Score Matching Procedure  

The goal of the propensity score matching procedure is to match, as closely as possible, 

each student who learned from an integrated course pathway with a student who learned from a 

subject-specific course pathway. The first step in the propensity score matching procedure is to 

create a logistic regression model to calculate the probability students are placed in their 
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respective course pathway.  Included in the logistic regression model are covariates related to 

students’ prior achievement, gender, race, socioeconomic status, and a student longitudinal 

analytic weight.  The inclusion of these variables was based on their use in previous research 

studies (Cai et al., 2011; Cai et al., 2013; Chavez et al., 2013; Grouws et al., 2013; Tarr et al., 

2013; DuGoff, Schuler, & Stuart, 2014). 

The calculated probability from the logistic regression model is called a propensity score, 

which takes a value between 0 and 1.   The second step is to use a caliper to create a 1:1 match of 

students in the groups.  The pairs are selected at random from subject-specific and integrated 

course pathway students whose difference in propensity scores is less than 0.1 of each other.  

The caliper matching procedure matches each student with a given propensity score who learned 

from an integrated course pathway with a student who has a nearly identical propensity score, 

but enrolled in a subject-specific course pathway.  The students in the integrated course pathway 

function like a treatment group.  The students in the subject-specific course pathway function 

like a control group.  The subject-specific student in each pair provides a "counterfactual" 

estimate of what the outcome for the integrated student would have been if that student had 

learned from a subject-specific pathway.  

Statistical Analysis 

To examine whether differences exist in students’ outcome measures, the mean 

performance gain of students who enrolled in a subject-specific course pathway was statistically 

compared to the mean performance gain of students who enrolled in integrated course pathways.  

Mean gain scores for each student were determined by calculating the difference between their 

posttest and pretest scores.  After gain scores were calculated for each student, the difference in 

the gains of students in each matched pair was calculated.  Finally, the SAS statistical software 
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package (SAS 9.4) was used to perform correlated means t-test to determine if the mean 

difference in gain scores on the overall assessment and proficiency levels were statistically 

different from zero.  In addition, effect sizes (i.e. Cohen’s d) are calculated by dividing the 

difference in mean gains score by the pooled standard deviation of the mean gain scores.    

Results 

Descriptive Statistics 

In the propensity score matching procedure numerous logistic regression models were 

specified with a goal of identifying the best model with the best balance on all observed 

variables.   Although no rule exists for how close to zero will achieve adequate balance, 

researchers suggest balance is achieved when the index is very close to zero for each of the 

pretest covariates and also for the propensity score itself (Steiner et al., 2010).   Steiner and 

colleagues suggest acceptable balance is achieved when Cohen’s d for all continuous measures 

was d < 0.20, and the odds ratio for all categorical variables was between 0.80 and 1.25.  The 

model with the best balance included variables related only to students’ gender, race, 

socioeconomic status, weights, and prior achievement.  The descriptive statistics of all the 

covariates included in the logistic regression model before and after matching are presented in 

Tables 1 - 3.  Table 4 presents the mean and standard deviation of students’ performance on the 

pretest and posttest measures, and the mean gain scores of the groups.   

Table 1  

Students’ Demographics Before and After Matching (Percentage of Sample in Parentheses) 
 Before Matching   After Matching 

Characteristics 
Subject-specific 

(n=4956) 

Integrated 

(n=73) 

Effect size 

(OR) 
 

Subject-specific 

(n=73) 

Integrated 

(n=73) 

Effect 

size (OR) 

Male 2450 (0.49) 38 (0.52) 0.94  36 (0.49) 38 (0.52) 0.94 

Female 2506 (0.51) 35 (0.48) 1.05  37 (0.51) 35 (0.48) 1.05 

Black   526 (0.11) 10 (0.14) 0.78    9 (0.12) 10 (0.14) 0.90 

White 2893 (0.58) 43 (0.59) 0.99  43 (0.59) 43 (0.59) 1.00 

Hispanic  748 (0.15)   9 (0.12) 1.26    8 (0.11)   9 (0.12) 0.91 

Other Races  789 (0.16) 11 (0.15) 1.06   13 (0.18) 11 (0.15) 1.18 

Note. Other races represent students classified as Asian, Native Hawaiian, American Indian, and Multi-racial. 
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Table 2 

Students’ Mean Socioeconomic Status, Weight, and Propensity Score Before and After 

Matching (Standard Deviation in Parentheses) 

 Before Matching   After Matching 

  

Subject-

specific 

(n=4956) 

Integrated 

(n=73) 

Effect 

size(d) 
  

Subject-

specific  

(n=73) 

Integrated 

(n=73) 

Effect 

size (d) 

SES 0.11 (0.72) -.067 (0.69) 0.24  -0.097 (0.71) -.067 (0.70) 0.04 

Weight 209.64 (295.7) 170.48 (156.4) 0.16  189.85 (180.8) 170.48 (156.4) 0.11 

Propensity  0.01(0.01) 0.02(0.01) 0.52  0.021 (.01) 0.021 (0.01) 0.00 

 

Table 3  

Students’ Means 9th Grade Performance Before and After Matching (Standard Deviation in 

Parentheses) 

  Before Matching   After Matching 

 Score 

Subject-specific 

(4956) 

Integrated 

(n=73) 

Effect 

size (d) 
  

Subject-specific 

(n=73) 

Integrated 

(n=73) 

Effect 

size (d) 

Overall 39.42 (9.03) 41.93 (10.76) 0.25   42.01 (10.17) 41.93 (10.76) 0.01 

Proficiency 1 0.92 (0.19) 0.91 (0.23) -0.04   0.92 (0.23) 0.91 (0.23) 0.04 

Proficiency 2 0.64 (0.30) 0.70 (0.32) 0.19   0.71 (0.30) 0.70 (0.32) 0.03 

Proficiency 3 0.41 (0.31) 0.51 (0.35) 0.31   0.51 (0.34) 0.51 (0.35) 0.01 

Proficiency 4 0.14 (0.15) 0.21 (0.23) 0.33   0.20 (0.20) 0.21 (0.23) 0.03 

Proficiency 5 0.07 (0.04) 0.09 (0.07) 0.34   0.08 (0.06) 0.09 (0.07) 0.10 

 

Table 4 

Statistics of Students’ Mean Performance (Standard Deviations in Parentheses) 

  Integrated   Subject-Specific 

  Pretest Posttest Gain   Pretest Posttest Gain 

  Mean (SD) Mean (SD) Mean (SD)  Mean (SD) Mean (SD) Mean (SD) 

Overall 41.9 (10.7) 68.1 (17.70) 26.2 (11.9)   42.0 (10.2) 66.9 (15.4) 24.9 (11.1) 

Proficiency 1 0.91 (0.22) 0.94 (0.18) 0.03 (0.19)   0.92 (0.23) 0.95 (0.17) 0.04 (0.24) 

Proficiency 2 0.70 (0.32) 0.81 (0.31) 0.11 (0.25)   0.71 (0.3) 0.84 (0.26) 0.12 (0.25) 

Proficiency 3 0.51 (0.35) 0.73 (0.35) 0.22 (0.30)   0.51 (0.34) 0.73 (0.31) 0.22 (0.29) 

Proficiency 4 0.21 (0.23) 0.35 (0.34) 0.14 (0.25)   0.20 (0.20) 0.29 (0.3) 0.08 (0.23) 

Proficiency 5 0.09 (0.08) 0.21 (0.30) 0.12 (0.26)   0.08 (0.06) 0.16 (0.26) 0.07 (0.24) 
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Upon completion of numerous iterations of the propensity score matching procedure, and 

based on an a priori power analysis (effect size = .50, alpha level = .05, power = .99), a 

sufficient sample size of 146 students or 73 matched pairs was yielded.  Collectively, the effect 

sizes of the differences in students’ prior achievement, socioeconomic status, propensity score, 

and weighting after matching were trivial, which suggests the groups were balanced on all 

covariates included in the propensity score model. Therefore, and theoretically, statistical 

differences in outcomes measures between students who learned from subject-specific and 

integrated course pathways represent an unbiased estimate of the population mean difference 

(Graham, 2010; Rosenbaum & Rubin, 1983).    

Inferential Statistics 

In this section, results of the correlated means t-test and calculated effect sizes (d) based 

on statistics presented in Tables 4 are presented.  On the overall assessment which included 72 

questions, students who enrolled in integrated courses had slightly greater gains (M =26.19, SD 

=11.88) than students who enrolled in subject-specific courses (M=24.9, SD =11.13).  However, 

the results of the t-test  (𝑀 = 1.29, 𝑆𝐷 = 16.10, 𝑡(200) = 0.13, 𝑝 = .89) reveal no statistically 

significant difference in gain scores.  The calculated effect size value is d = .11. 

On items related to algebraic expressions (i.e. proficiency 1) on the algebra assessment, 

students who enrolled in subject-specific courses had slightly greater gains (M=0.04, SD =0.24) 

than students who enrolled in integrated courses (M =0.03, SD =0.19).  However, the results of 

the t-test (𝑀 = −0.01, 𝑆𝐷 = 0.29, 𝑡(200) = −0.36, 𝑝 = 0.72) reveal no statistically significant 

difference in gain scores.  The calculated effect size value is d = .03.  
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On items related to multiplicative and proportional thinking (i.e. proficiency 2) on the 

algebra assessment, students who enrolled in subject-specific courses had slightly greater gains 

(M=0.12, SD =0.25) than students who enrolled in integrated courses (M =0.11, SD =0.25).  

However, the results of the t-test (𝑀 = −0.01, 𝑆𝐷 = 0.31, 𝑡(200) = .03, 𝑝 = 0.97) reveal no 

statistically significant difference in gain scores.  The calculated effect size value is d = .05. 

On items related to linear equivalents (i.e. proficiency 3) on the algebra assessment, the 

gains of students who enrolled in subject-specific courses is similar to the gains (M=0.22, SD = 

0.29) of students who enrolled in integrated courses (M =0.22, SD =0.30).  The results of the t-

test (𝑀 = 0.00, 𝑆𝐷 = 0.39, 𝑡(200) = 0.43, 𝑝 = 0.67) reveal no statistically significant 

difference in gain scores.  The calculated effect size value is d = .003.   

On items related to systems of equations (i.e. proficiency 4) on the algebra assessment, 

students who enrolled in integrated courses had greater gains (M =0.14, SD = 0.25) than students 

who enrolled in subject-specific courses (M=0.08, SD =0.23).  However, the results of the t-test 

 (𝑀 = 0.05, 𝑆𝐷 = 0.35, 𝑡(200) = −0.05, 𝑝 = 0.96) reveal no statistically significant difference 

in gain scores.  The calculated effect size value is d = .22.   

On items related to linear functions (i.e. proficiency 5) on the algebra assessment, 

students who enrolled in integrated courses had greater gains (M =0.12, SD =0.26) than students 

who enrolled in subject-specific courses (M=0.07, SD =0.24).  However, the results of the t-test 

 (𝑀 = 0.05, 𝑆𝐷 = 0.33, 𝑡(200) = −0.43, 𝑝 = 0.66) reveal no statistically significant difference 

in gain scores.  The calculated effect size value is d = .19.    

Conclusion 

The question this study investigated is “How does the algebraic performance of high 

school students enrolled in integrated course pathways relate to the algebraic performance of 
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high school students enrolled in subject-specific course pathways?”  Collectively, on the overall 

algebra assessment and specific content items, the results of the correlated t-tests reveal no 

statistically significant differences exist in the algebraic performance gains between the high 

school students who learned mathematics from integrated course pathways and the high school 

students who learned from subject-specific course pathways.  In addition, the calculated effects 

sizes (d) suggest content organization has low practical significance on students’ algebraic 

proficiency.  Consistent with expectations of the National Mathematics Advisory Panel (NMAP, 

2008), the results of this study suggest high school students can perform comparably through 

algebraic content regardless of whether the students enroll in a subject-specific or integrated 

course pathway.   

The non-statistically significant results from this study contradict results from the 

COSMIC project that suggest high school students who study from an integrated curriculum are 

advantaged over students who study from subject-specific curricula (Chavez et al., 2013; Grouws 

et al., 2013; Tarr et al., 2013) during the first three years of high school.  The differences in 

methodological approaches and findings between this study and findings from the COSMIC 

project suggest a need for more research in this area.  New knowledge related to effects of 

content organization on students’ achievement can assist in making decisions related to the type 

of course pathway to implement into high school mathematics programs.  In particular, similar to 

this study, data from the COSMIC project can be further examined to identify more detailed 

differences in students’ performance on specific concepts or test items.  An analysis of items 

from assessment used in the COMIC project may identify specific content that attributed to 

statistical differences in the projects results.   
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Significance  

A significant aspect of this exploratory study is it demonstrates a propensity score 

matching procedure that can be used in studies of curricular effectiveness to reduce the threat of 

selection bias when random assignment is not possible.  Selection bias is a problem for 

mathematics education researchers who seek to make inferences about the effects of different 

instructional methods or curricular approaches in mathematics on student outcomes (Graham, 

2010).  For example, the students who participated in the COSMIC project were not randomly 

assigned to course pathways.  Instead, they were observed in their natural occurrence.  Grouws et 

al. (2013) and Tarr et al. (2013) used logistic regression to generate a propensity score for each 

student to investigate the threat of selection bias.  The propensity scores revealed Hispanic and 

African American students were more likely to be assigned to the subject-specific course pathway.  

As a result, differences in outcomes can be attributed to these preexisting differences.  In 

particular, Grouws et al. (2013) and Tarr et al. (2013) found that Hispanic and African American 

students performed statistically lower than White students on all measures.  Because minority 

students were more likely to be assigned to the subject-specific course pathway, the results of 

studies from the COSMIC project (Grouws et al., 2013; Tarr et al., 2013) could have been 

negatively biased, causing students enrolled in the integrated course pathway to appear to 

perform better on some of the outcome measures.   

Similar to the current study, the researchers could have investigated further and matched 

students based on their propensity scores to reduce the threat of selection bias.  More 

specifically, if ancillary analysis were conducted using data from the COSMIC project, it would 

be interesting to determine whether the results would be consistent with the project’s original 

findings if a propensity score matching method is employed.   
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