Many Concepts, Few Numbers: A Novel Approach to Math Interventions

Nancy Dyson
University of Delaware

\square How we arrived at this novel approach
\square How we applied it to basic number sense
\square How we are applying it to fraction sense
-Your Turn! Q and A and discussion around how YOU might use this approach

UNIVERSITY of DELAWARE

The Math Problem

- Poor achievement in math is widespread with serious educational and vocational consequences.
- Students who do not develop foundational mathematics in elementary and middle school, are less likely to graduate from college than higher-achieving students (NMAP, 2008).
- Large math disparities exist between middle- and low-income children before they enter school at about five years of age (Jordan \& Levine, 2009; National Research Council, 2009).

UNIVERSITY of DELAWARE

Income - Achievement Gap

 ECLS 2011

UNIVERSITY of DELAWARE

Income - Achievement Gap

NAEP Mathematics 2013
Fourth Grade

UNIVERSITY of DELAWARE

Income - Achievement Gap

NAEP Mathematics 2013
Eighth Grade (4 ${ }^{\text {th }}$ Grade)

300				294	296	297	296
	287	288	291				
270			265		269	270	268
	$259 \quad 262$						
250	28 (22)	26 (23)	26 (22)	28 (27)	27 (23)	27 (24)	28 (24)
Gap in Scores							
	2003	2005	2007	2009	2011	2013	2015
			${ }^{\text {NLSP not elie }}$	-N	Eligible		

Numbers do not make sense to many children

© Randy Glasbergen

glasbergen.com

"First they told me that $2+2=4$. Then they told me that $3+1=4$. That's when I lost faith in public education!"

UNIVERSITY of DELAWARE

Many times we are at a loss as to how to help them.

© MARK ANDERSON
 WWW.ANDERTOONS.COM

"On the plus side it's something for your PLC to chew on."

UNIVERSITY of DELAWARE

UNIVERSITY of DELAWARE

Number Sense Development

Quantity
 Connections

Very young children are sensitive to number
(Dehaene,1999)

SUBITIZE - the ability to recognize small quantities without counting

Habituation studies show even 6 month old children can
distinguish between quantities
(Feigenson, Dehaene, \& Spelke, 2004)

Perceptually

UNIVERSITY of DELAWARE

Number Sense Development

 (Griffin \& Case,1997)

Number Sense Development

(Griffin \& Case,1997)

KINDERGARTEN

CENTRAL
CONCEPTUAL STRUCTURE FOR WHOLE NUMBERS

Number Sense Development

Magnitude Comparison

MENTAL NUMBER LIST

1	2	3	4	5	6	7	8	9	10

As you go up the list, the quantities get larger

Each number is one more than the number before it and one less than the number after it. (Baroody, Eliand, \& Thompson, 2009)

Number Sense Development

Number Operations

$$
3+2=5
$$

UNIVERSITY of DELAWARE

Developing Number Sense in Children at Risk for Mathematics Learning

Disabilities

funded by the National Institute of Child Health and Human Development (5R01HD059170), Nancy C. Jordan, Principal Investigator 2009-2014

UNIVERSITY of DELAWARE

The

TCM February 2015
Dyson, Jordan, Hassinger-Das

Positioned for future success:
Evidence-based number sense interventions (NSI) can help kindergartners link their nonverbal understanding of quantities to the symbolic representations of number, number relations, and number operations.

[^0]

Brookes Publishing
Also Available from Amazon

UNIVERSITY of DELAWARE

Number Sense Development

Quantity Connection

UNIVERSITY of DELAWARE

Number Sense Development

Magnitude Comparison

MENTAL NUMBER LIST

As you go up the list, the quantities get larger

Number Sense Development

Number Operations

UNIVERSITY of DELAWARE

Number Sense Development

Number Operations

Combinations

Partners

Story problems

$$
1+3=4
$$

UNIVERSITY of DELAWARE

Intervention Study by Year

20 Lesson intervention - Each Lesson 30 minutes

Year one:

- Intervention successful with at-risk students
- Schools serving low-income communities

Year two:

- Intervention successful with at-risk students
- Schools serving low-income communities

Year three:

- Targeted at-risk students with low numeracy
- Successful but effect sizes much smaller

Year four:

- Targeted at-risk students with low numeracy
- Revised intervention
- Successful with large effect sizes

UNIVERSITY of DELAWARE

Many Concepts - Few Numbers

 0, 1, 2

SUBITIZING DOT CARDS

SUBITIZING FINGERS

FIVE FRAMES

UNIVERSITY of DELAWARE

QUANTITY CONNECTIONS

0

1

INTERLOCKING CUBES

2

NUMBER RECOGNITION CARDS

MAGNITUDE COMPARISON

$$
\begin{array}{llllllll}
\hline & & & & & & & \\
\hline
\end{array}
$$

UNIVERSITY of DELAWARE

MAGNITUDE COMPARISON CARD GAMES

- Hold up two cards - "Which is Bigger?"
- Hold up one card - "What number comes before \qquad , what number comes after \qquad ."
- Put out all the cards - "Put these cards in order from smallest to largest."

NUMBER OPERATIONS

(7) UNIVERSITY of DELAWARE

$1+1=2$

2-1 = 1

UNIVERSITY of DELAWARE

INTRODUCING MORE NUMBERS

- Introduce one new number at a time
- Stop at 5 - ensure mastery before moving on
- Numbers 6 and above - 5 and 1,2,3,4,5
- Fingers on 2 hands
- Different color cubes above 5 on Cardinality Chart
- Move to Ten Frame

UNIVERSITY of DELAWARE

INTRODUCING MORE NUMBERS

- Stop at 10 - ensure mastery
- Move from Cardinality Chart to Number List
- Play Number List Games
- Before/After Games
- Bigger Smaller
- Numbers above 10 - 2010 and 1,2,3,4,5,6,7,8,9,10
- Use cubes to create sticks of 10
- Use stick of 10 and n single cubes to build the number
- Use Decade and Unit cards to build the numeral

Center for Improving the Learning of Fractions

Principal Investigator: Dr. Nancy C. Jordan

Goals of the Center:
Conduct longitudinal analyses from $3^{\text {rd }}$ through $6^{\text {th }}$ grade to...

- study the development of fraction knowledge
- examine predictors of fraction achievement
- assess how proficiency with whole number operations contribute to the ability to understand and operate with rational numbers.

UNIVERSITY of DELAWARE

Latent Class Analysis

Fraction Concepts

Hansen, N., Jordan, N. C., \& Rodrigues, J. (2016)

Developing a Fraction Sense Intervention for Struggling Middle School Students

UNIVERSITY of DELAWARE

Fractions are Important!

Students will need fractions for every day problem solving

Fractions do not make sense even to many adults!

$\frac{1}{3}$ pounder OR $\frac{1}{4}$ pounder
Which has more beef?

UNIVERSITY of DELAWARE

Why Fractions are Hard!

WHOLE NUMBERS

Only one numeral for each whole number magnitude

$$
0,1,2,3,4, \ldots \ldots
$$

$$
1 / 2=2 / 4=4 / 8=5 / 10=\ldots \ldots
$$

Each counting number is one more than the number before it.

$$
0+1=1,1+1=2,2+1=3,3+1=4, \ldots
$$

The magnitude of the number increases as you count higher.

$$
1<2<3<4
$$

$$
1 / 4<2 / 4<3 / 4<4 / 4
$$

UNIVERSITY of DELAWARE

Why Fractions are Hard!

WHOLE NUMBERS

FRACTIONS

The magnitude of the number increases as you count higher.

$$
1<2<3<4
$$

But what about when they both change?!?

$$
2 / 4<3 / 5 \quad 3 / 5<2 / 3
$$

The product of two whole numbers is always greater than (or equal to) either factor.

The product of two fractions can be less than either factor.

$$
2 \times 3=6
$$

$$
1 / 2 \times 3 / 4=3 / 8
$$

UNIVERSITY of DELAWARE

Examples of Misconceptions

$$
\frac{4}{5}=00000
$$

Most common incorrect response

$$
\frac{4}{5}=
$$

UNIVERSITY of DELAWARE

Examples of Misconceptions

Most Common Incorrect Response:

Shade $\frac{1}{3}$ of the rectangle above.

UNIVERSITY of DELAWARE

Examples of Misconceptions

In which of the following are the three fractions arranged from least to greatest?

Examples of Misconceptions

Mark says $\frac{1}{4}$ of his candy bar is
smaller than $\frac{1}{5}$ of the same candy
bar. Is Mark right? Explain.

Comparing $1 / 4$ and $1 / 5$

UNIVERSITY of DELAWARE

Examples of Misconceptions

On the portion of the number line below, a dot shows where $1 / 2$ is. Use another dot to show where $3 / 4$ is.

Most Common
Incorrect Responses:

UNIVERSITY of DELAWARE

Estimating fraction magnitudes on a number line:

$$
\frac{1}{19}
$$

$$
\frac{1}{2}
$$

UNIVERSITY of DELAWARE

Latent Class Analysis

Fraction Number Line Estimation Resnick, I., Jordan, N.C., Hansen, et al. (2016)

Scores were calculated as Percent Absolute Error (PAE), meaning that lower scores indicate better performance.

UNIVERSITY of DELAWARE

Latent Class Analysis

Fraction Number Line Estimation

Resnick, I., Jordan, N.C., Hansen, et al. (2016)

Examples of Misconceptions

Fraction Sense Intervention

Small group (4 students /1 instructor) 24 lessons, everyday 40 minutes each

(S) UNIVERSITY of DELAWARE

Many Concepts - Few Numbers

HALVES

Developing Fraction Sense

40-minute lessons:

- Warm Up
- Exercises
- Huddle
- Fraction Game
- Sprint
- Cool Down

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

WARM UP

Written activity done as students arrive to the intervention.

Matches the previous day's COOL DOWN

Developing Fraction Sense with Halves

EXERCISES

Oral Counting Activities with Halves

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

 HUDDLEDevelop Fraction Concepts, Vocabulary, and Strategies using Halves

How can I separate this into halves?

- 2 EQUAL Portions?
- Ask, "Of What Whole?"

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

Developing Number Line Concepts Using a Race Course

Use a paper bar to measure whole miles

4-Mile Race Course with Half Miles Marked

1. Mark Halves (use folded paper bar to check accuracy)
2. Put on stickers
3. Label halves - note whole number/halves equivalencies

Walking the Race Course to Solve Equations

$$
2 / 2+1 / 2=3 / 2
$$

$3 / 2-1 / 2=2 / 2$

Whole and Mixed Numbers

- Note Mixed Number / Improper Fraction Equivalences
- Change From Mixed Number to Improper Fraction
- Change from Improper Fraction to Mixed Number

Connecting Fraction Models to Deepen Conceptual Understanding

Using fraction bars on the number line emphasizes that $1 / 2$ stands for the distance from 0 to $1 / 2$ - not just the location where the $1 / 2$ is written.

UNIVERSITY of DELAWARE

USING SAME STRATEGY for FRACTION of a SET

Find $1 / 2$ of 12 circles

$1 / 2$ of 12 circles is 6 circles (introduction to multiplication by a fraction)

UNIVERSITY of DELAWARE

CONNECTING TO EVERYDAY ACTIVITIES

RULER ACTIVITIES
Ruler Marked in Halves

Introducing THIRDS with a Proportional Reasoning Task

A Measuring Cup $=$ a Vertical Number Line

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

FRACTION GAMES

Fast-paced card games to reinforce lesson concepts and develop fluency

How many halves?

How many halves?

What mixed number?

UNIVERSITY of DELAWARE

Developing Fraction Sense with Halves

SPRINT

Multiplication Facts that Support the Lesson
For Halves: $\mathrm{n} \times 2$

$$
5 \times 2=10
$$

Initial Practice with
Front of Card

$$
5 \times 2=
$$

Final Practice with
Back of Card

Front of card is shown for ERROR correction students always end with a correct statement

Developing Fraction Sense with Halves

 COOL DOWN

 COOL DOWN}

Formative assessment and review

Use your ruler to measure the length of the pen to the exact $\frac{\mathbf{1}}{\mathbf{2}}$ inch:

\qquad

Use your ruler to measure the length of the Lego piece to the closest $\frac{1}{2}$ inch:

\qquad
in.

Use your rulers to help you solve the equations. Write your answers with mixed or whole numbers.

$$
\begin{aligned}
& \frac{5}{2} \text { inches }+\frac{2}{2} \text { inches }= \\
& \frac{4}{2} \text { inches }-\frac{3}{2} \text { inches }=
\end{aligned}
$$

SEPARATING HALVES TO MAKE FOURTHS

SEPARATING HALVES TO MAKE FOURTHS

Finding Equivalent Fractions

- Mark Halves - put on stickers
- Mark Fourths - put on stickers
- Label Fourths
- Label Halves
- Find Equivalent Fractions

UNIVERSITY of DELAWARE

AND SO FORTH........

Teaching Exceptional Children

Preparing for Algebra by Building Fraction Sense

Jessica Rodrigues, Nancy I. Dyson, Nicole Hansen, and Nancy C. Jordan

THANK YOU!

ndyson@udel.edu jcarr@udel.edu

[^0]: By Nancy I. Dyson, Nancy C. Jordan, and Brenna L. Hassinger-Das

