Counting Cubes

Building 1

Building 2

Building 3

1. Determine the number of cubes in each of the first three building.
2. Sketch Building 4 and determine the number of cubes in the building.
3. Determine the number of cubes in Building 10 without building or sketching it.
4. Write a description that could be used to find the number of cubes in any building and explain why it works.
5. Determine which building would contain 681 cubes.
6. Without graphing, describe what you think the graph would look like if Building Number is the independent variable and Number of Cubes is the dependent variable. Explain your reasoning.

Visual Pattern Resources

Articles

Friel, S. N., \& Markworth, K. A. (2009). A framework for analyzing geometric pattern tasks. Mathematics Teaching in the Middle School, 15 (1), 24-33.

Smith, M.S., Hillen, A.F., \& Catania, C. (2007). Using pattern tasks to develop mathematical understandings and set classroom norms. Mathematics Teaching in the Middle School, 13 (1), 38-44.

URL's for Visual Pattern Tasks

http://www.visualpatterns.org
Elementary/Middle Grades
Investigating Growth Patterns
(http://mathwire.com/algebra/growingpatterns.html)
High School
Skeleton Tower (http://map.mathshell.org/tasks.php?unit=HE07\&collection=9)
Table Tiling (http://map.mathshell.org/download.php?fileid=818)
Sidewalk Stones (http://map.mathshell.org/download.php?fileid=822)

Visual Pattern Lessons

http://www.nctm.org/PtAToolkit/
Middle School - Hexagon
Middle School - Counting Cubes
High School - S-Pattern
Smith, M. S., Silver, E. A., Stein, M. K., Henningsen, M. A., Boston, M., \& Hughes, E.K. (2005). Improving instruction in algebra: Using cases to transform mathematics teaching and learning, Volume 2. New York: Teachers College Press.

Chapter 2 Examining Linear Growth Patterns: The Case of Catherine Evans an David Young
Chapter 3 Examining Nonlinear Growth Patterns: The Case of Ed Taylor
Schifter, D., Bastable, V., \& Russell, S.J. (2015). Patterns, functions, and change.
Reston, VA: National Council of Teachers of Mathematics.

Student Work on Counting Cubes

Joshua

The first building has one cute. The second treeing has six cubes and the third building has eleven cubed.
The fourth building has fee more cubes, so it hes sixteen.
The tower has as many cubes as the bulling number and the arms have one less. So the tenth becilaino has forty sex cubes.

Marisa

Building	Cubes
1	1
2	6
3	11
4	16
5	21
10	46

$$
\begin{aligned}
& 5(3)+1=16 \\
& 4^{1+} \\
& 5(9)+1=46 \\
& 5(n-1)+1
\end{aligned}
$$

Darvin

Tabitha

Building $1 \rightarrow 1(2)+5$
Building $2 \rightarrow 6{ }^{2}+5$
Building $3 \rightarrow 162+5$
Building $4 \rightarrow 16^{2+5}$
Building $5 \rightarrow 21$
Building $6 \rightarrow 26$
Building $7 \rightarrow 31$
Building $8 \rightarrow 36$
Building $9 \rightarrow 41$
Building $10 \rightarrow 46$

Add 5 to the number of cubes in the last building.

$$
n+5
$$

