Counting Cubes

- 1. Determine the number of cubes in each of the first three building.
- 2. Sketch Building 4 and determine the number of cubes in the building.
- 3. Determine the number of cubes in Building 10 *without* building or sketching it.
- 4. Write a description that could be used to find the number of cubes in **any** building and explain why it works.
- 5. Determine which building would contain 681 cubes.
- 6. Without graphing, describe what you think the graph would look like if Building Number is the independent variable and Number of Cubes is the dependent variable. Explain your reasoning.

Visual Pattern Resources

Articles

- Friel, S. N., & Markworth, K. A. (2009). A framework for analyzing geometric pattern tasks. *Mathematics Teaching in the Middle School*, *15* (1), 24-33.
- Smith, M.S., Hillen, A.F., & Catania, C. (2007). Using pattern tasks to develop mathematical understandings and set classroom norms. *Mathematics Teaching in the Middle School*, *13* (1), 38-44.

URL's for Visual Pattern Tasks

http://www.visualpatterns.org

<u>Elementary/Middle Grades</u> Investigating Growth Patterns (<u>http://mathwire.com/algebra/growingpatterns.html</u>)

High School

Skeleton Tower (<u>http://map.mathshell.org/tasks.php?unit=HE07&collection=9</u>) Table Tiling (<u>http://map.mathshell.org/download.php?fileid=818</u>) Sidewalk Stones (<u>http://map.mathshell.org/download.php?fileid=822</u>)

Visual Pattern Lessons

http://www.nctm.org/PtAToolkit/

Middle School – Hexagon Middle School – Counting Cubes High School – S-Pattern

Smith, M. S., Silver, E. A., Stein, M. K., Henningsen, M. A., Boston, M., & Hughes, E.K. (2005). *Improving instruction in algebra: Using cases to transform mathematics teaching and learning, Volume 2.* New York: Teachers College Press.

Chapter 2 Examining Linear Growth Patterns: The Case of Catherine Evans an David Young Chapter 3 Examining Nonlinear Growth Patterns: The Case of Ed Taylor

Schifter, D., Bastable, V., & Russell, S.J. (2015). Patterns, functions, and change. Reston, VA: National Council of Teachers of Mathematics.

Student Work on Counting Cubes

Joshua

- The first building has one cube. The second second second the third failding has elleven cubes. The fourth building has five more cubes, so it
- has sixteen.
- The tower las as many cubes as the building number and the arms have one less. So the tenth building has forty sex cubes.

Marisa

Darvin

	fcubes	
Bidg 1 Bidg 3 Bidg 3	1 1+5=6 +5 6+5=11	n
31dg 4 Bldg 5	1+5(4)=21 1+5(5)=26	
Bldg 1D	1#5(10)=51	

Tabitha

Building 1 + 1)+5
Building 2 + 6)+5
Building 3 -> 11 2)+5
Building 4 + 16
Building 5 → 21
Building $6 \rightarrow 26$
Building $7 \rightarrow 31$
Building 8 → 36
Building 9 -> 41
Building 10 + 46

Add 5 to the number of cubes in the last building,

n+5