$$
\begin{gathered}
2=1+1 \\
\text { and other } \\
\text { Compositions }
\end{gathered}
$$

with Fawn Nguyen and Joshua Zucker @fawnpnguyen, @joshuazucker

What is a Composition?

- $2=1+1$ are the two legal ways to make 2 .
- There are four legal ways to make 3. What are they?
- $3=2+1=1+2=1+1+1$.
- So what are the rules?
- Only positive integers.
- Only addition.
- Or: "The total of a list of positive integers"

The Challenge

- How many ways to make 10 ?
- Is there a number you're sure is too small?

A number you're sure is too big?
What's your best guess at the answer?

- How do you respond to a hard problem?
- Do an easier one!
- Find a way to strategize, organize.
- Patience!

Easier problem: 4

- How many legal ways to make 4 ?
- How do you know your list is complete and doesn't have any duplicates?
- Organization!
- $4=3+1=2+2=1+3$

$$
\begin{aligned}
& =2+1+1=1+2+1=1+1+2 \\
& =1+1+1+1
\end{aligned}
$$

- That's one way to organize, brainstorm more now!

Ways to Organize

- How many parts (as we did with 4).
- First part (or last part).
- Size of largest part.
- Size of smallest part.
- How many 1 s are used.
- How many different parts
- More ideas?

Organizing by first part

- 1. Well, there's one way, first part is 1 .
- 2. One with 1 first, $1+1$.

One with 2 first, 2.

- 3. Two with 1 first, $1+1+1$ and $1+2$.

One with 2 first, $2+1$.
One with 3 first, 3.

- 4. Four, two, one, one.
- A pattern? Does it continue? Why does it happen that way?

First part

	1	2	3	4	5	6	7
1	1						
2	1	1					
3	2	1	1				
4	4	2	1	1			
5							
6							
7							

Easier problem: 5

- How many start with 1 ? No, too hard.
- How many start with 5? OK, good.
- How many start with 4 ? Why?
- How many start with 3 ?

$$
\begin{aligned}
5 & =3+ \\
& =3+
\end{aligned}
$$

- $5=3+2$

$$
=3+1+1
$$

Easier problem: 5

- Start with $5=2+\ldots$ what do we need to finish?
- Right, 3 more. And how many ways are there to do it?
- We can recycle our previous results! So doing the other easier problems actually directly helps us do the harder ones.
- There are four ways to make 3 , so there are four ways to make 5 starting with 2 .
- And 1 ?

First part

	I	2	3	4	5	6	7
1	1						
2	1	1					
3	2	1	1				
4	4	2	1	1			
5	8	4	2	1	1		
6							
7							

First part

1	2	3	4	5	6	7	
1	1						
2	1	1					
3	2	1	1				
4	4	2	1	1			
5	8	4	2	1	1		
6	16	8	4	2	1	1	
7	32	16	8	4	2	1	1

Problem solved!

- So, how many ways to make 10 ?
- Indeed, 512.
- And look at all the strategies we've picked up along the way already: Easier problem. Organize. Patience. Recycle.
- So, the real lesson here: don't stop when you have an answer. Explore! Create questions! Solve it a different way!

How Many Parts

	1	2	3	4	5	6	7
1	1						
2	1	1					
3							
4							
5							
6							
7							

By how many parts

- 1. Well, there's one way, one part: 1.
- 2. One with 2 parts, $1+1$.

One with 1 part, 2.

- 3. One with 3 parts, $1+1+1$.

Two with 2 parts, $2+1,1+2$.
One with 1 part, 3.

- $4=3+1=2+2=1+3$

$$
\begin{aligned}
& =2+1+1=1+2+1=1+1+2 \\
& =1+1+1+1
\end{aligned}
$$

How Many Parts

	1	2	3	4	5	6	7
1	1						
2	1	1					
3	1	2	1				
4	1	3	3	1			
5							
6							
7							

By how many parts

- Recognize the pattern?
- Wonder if 5 with 3 parts will be 6 .
- How can we recycle now?
- 4 with 2 parts: end with $\mathrm{a}+1$.
- 4 with 3 parts: how to turn it into 5 with 3 parts?

Recycle!

We still need to fit
Wait, what are the other ways? Are there really three more?

$3+I$	$3+I+1$
$2+2$	$2+2+1$
$I+3$	$I+3+1$
$2+I+I$	
$I+2+I$	
$I+I+2$	

Recycle!

We still need to fit

$$
\begin{aligned}
& 1+1+3 \\
& 1+2+2 \\
& 2+1+2
\end{aligned}
$$

but which one goes with which, and why?

$$
\begin{array}{ll}
\hline 3+1 & 3+1+1 \\
\hline 2+2 & 2+2+1 \\
1+3 & 1+3+1
\end{array}
$$

$$
2+1+1
$$

$$
1+2+1
$$

$$
1+1+2
$$

Recycle!

$3+I$	$3+I+I$
$2+2$	$2+2+I$
$I+3$	$I+3+I$
$2+I+1$	$2+I+2$
$I+2+1$	$I+2+2$
$I+I+2$	$I+I+3$

Recycle, caveman style!

$11\|+\|$	$\|\|1+\|+\|$
$11+\mid$ \|	$\|1+\|$ \|+1
$1\|+\|+\|$	$\|1+\|+\| 1$
$\underline{1+1+1}$	
+ $+1+1$	$1+\|+\| 1$

Recycle, caveman style!

Now we can see that the caveman style of mathematics has its advantages even today.

Largest Part

1	2	3	4	5	6	7	
1	1						
2	1	1					
3	1	2	1				
4	1	4	2	1			
5	1		5	2	1		
6	1			5	2	1	
7	1				5	2	1

Conclusion

- We can count how many ways to make any number as a list of positive integers.
- Along the way we encounter powers of 2, Pascal's triangle, and much more!
- Strategies: Easier problem, organization, and above all, recycle.
- Creating new problems can be the best way to deepen your understanding.

